Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Load Limits with Fuel Effects of a Premixed Diesel Combustion Mode

2009-06-15
2009-01-1972
Premixed diesel combustion is intended to supplant conventional combustion in the light to mid load range. This paper demonstrates the operating load limits, limiting criteria, and load-based emissions behavior of a direct-injection, diesel-fueled, premixed combustion mode across a range of test fuels. Testing was conducted on a modern single-cylinder engine fueled with a range of ultra-low sulfur fuels with cetane number ranging from 42 to 53. Operating limits were defined on the basis of emissions, noise, and combustion stability. The emissions behavior and operating limits of the tested premixed combustion mode are independent of fuel cetane number. Combustion stability, along with CO and HC emissions levels, dictate the light load limit. The high load limit is solely dictated by equivalence ratio: high PM, CO, and HC emissions result as overall equivalence ratio approaches stoichiometric.
Technical Paper

Development of an In-Cylinder Heat Transfer Model with Compressibility Effects on Turbulent Prandtl Number, Eddy Viscosity Ratio and Kinematic Viscosity Variation

2009-04-20
2009-01-0702
In-cylinder heat transfer has strong effects on engine performance and emissions and heat transfer modeling is closely related to the physics of the thermal boundary layer, especially the effects of conductivity and Prandtl number inside the thermal boundary layer. Compressibility effects on the thermal boundary layer are important issues in multi-dimensional in-cylinder heat transfer modeling. Nevertheless, the compressibility effects on kinematic viscosity and the variation of turbulent Prandtl number and eddy viscosity ratio have not been thoroughly investigated. In this study, an in-cylinder heat transfer model is developed by introducing compressibility effects on turbulent Prandtl number, eddy viscosity ratio and kinematic viscosity variation with a power-law approximation. This new heat transfer model is implemented to a spark-ignition engine with a coherent flamelet turbulent combustion model and the RNG k- turbulence model.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Journal Article

Review of Soot Deposition and Removal Mechanisms in EGR Coolers

2010-04-12
2010-01-1211
Exhaust gas recirculation (EGR) coolers are commonly used in diesel engines to reduce the temperature of recirculated exhaust gases in order to reduce NOX emissions. Engine coolant is used to cool EGR coolers. The presence of a cold surface in the cooler causes fouling due to particulate soot deposition, condensation of hydrocarbon, water and acid. Fouling experience results in cooler effectiveness loss and pressure drop. In this study, possible soot deposition mechanisms are discussed and their orders of magnitude are compared. Also, probable removal mechanisms of soot particles are studied by calculating the forces acting on a single particle attached to the wall or deposited layer. Our analysis shows that thermophoresis in the dominant mechanism for soot deposition in EGR coolers and high surface temperature and high kinetic energy of soot particles at the gas-deposit interface can be the critical factor in particles removal.
Journal Article

Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline

2010-04-12
2010-01-1086
The potential of boosted HCCI for achieving high loads has been investigated for intake pressures (Piⁿ) from 100 kPa (naturally aspirated) to 325 kPa absolute. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) equipped with a compression-ratio 14 piston at 1200 rpm. The intake charge was fully premixed well upstream of the intake, and the fuel was a research-grade (R+M)/2 = 87-octane gasoline with a composition typical of commercial gasolines. Beginning with Piⁿ = 100 kPa, the intake pressure was systematically increased in steps of 20 - 40 kPa, and for each Piⁿ, the fueling was incrementally increased up to the knock/stability limit, beyond which slight changes in combustion conditions can lead to strong knocking or misfire. A combination of reduced intake temperature and cooled EGR was used to compensate for the pressure-induced enhancement of autoignition and to provide sufficient combustion-phasing retard to control knock.
Technical Paper

Ignition and Early Soot Formation in a DI Diesel Engine Using Multiple 2-D Imaging Diagnostics*

1995-02-01
950456
A combination of optical imaging diagnostics has been applied to the fuel jet of a direct-injection diesel engine to study the ignition and early soot formation processes. Measurements were made in an optically accessible direct-injection diesel engine of the “heavy-duty” size class at a representative medium speed (1200 rpm) operating condition. Two fuels were used, a 42.5 cetane number mixture of the diesel reference fuels and a new low-sooting fuel (needed to reduce optical attenuation at later crank angles) that closely matches both the cetane number and boiling point of the reference fuel mixture. The combustion and soot formation processes are found to be almost identical for both fuels. Ignition and early combustion were studied by imaging the natural chemiluminescence using a calibrated intensified video camera. The early soot development was investigated via luminosity imaging and simultaneous planar imaging of laser-induced incandescence (LII) and elastic scattering.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Journal Article

Characteristics of Isopentanol as a Fuel for HCCI Engines

2010-10-25
2010-01-2164
Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C 4 -C 5 alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C 5 alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity.
Technical Paper

Biodiesel Imposed System Responses in a Medium-Duty Diesel Engine

2010-04-12
2010-01-0565
The often-observed differences in nitrogen oxides, or NOx, emissions between biodiesel and petroleum diesel fuels in diesel engines remain intense topics of research. In several instances, biodiesel-fuelled engines have higher NOx emissions than petroleum-fuelled engines; a situation often referred to as the "biodiesel NOx penalty." The literature is rich with investigations that reveal many fundamental mechanisms which contribute to (in varying and often inverse ways) the manifestation of differences in NOx emissions; these mechanisms include, for example, differences in ignition delay, changes to in-cylinder radiation heat transfer, and unequal heating values between the fuels. In addition to fundamental mechanisms, however, are the effects of "system-response" issues.
Journal Article

Comparison of Different Boosting Strategies for Homogeneous Charge Compression Ignition Engines - A Modeling Study

2010-04-12
2010-01-0571
Boosted Homogeneous Charge Compression Ignition (HCCI) has been modeled and has demonstrated the potential to extend the engine's upper load limit. A commercially available engine simulation software (GT-PowerÖ) coupled to the University of Michigan HCCI combustion and heat transfer correlations was used to model a 4-cylinder boosted HCCI engine with three different boosting configurations: turbocharging, supercharging and series turbocharging. The scope of this study is to identify the best boosting approach in order to extend the HCCI engine's operating range. The results of this study are consistent with the literature: Boosting helps increase the HCCI upper load limit, but matching of turbochargers is a problem. In addition, the low exhaust gas enthalpy resulting from HCCI combustion leads to high pressures in the exhaust manifold increasing pumping work. The series turbocharging strategy appears to provide the largest load range extension.
Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Journal Article

Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost

2010-04-12
2010-01-0338
The characteristics of ethanol autoignition and the associated HCCI performance are examined in this work. The experiments were conducted over wide ranges of engine speed, load and intake boost pressure (Piⁿ) in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston. The data show that pure ethanol is a true single-stage ignition fuel. It does not exhibit low-temperature heat release (LTHR), not even for boosted operation. This makes ethanol uniquely different from conventional distillate fuels and offers several benefits: a) The intake temperature (Tiⁿ) does not have to be adjusted much with changes of engine speed, load and intake boost pressure. b) High Piⁿ can be tolerated without running out of control authority because of an excessively low Tiⁿ requirement. However, by maintaining true single-stage ignition characteristics, ethanol also shows a relatively low temperature-rise rate just prior to its hot ignition point.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Cylinder Pressure Reconstruction and its Application to Heat Transfer Analysis

2004-03-08
2004-01-0922
In this paper, a new method for cylinder pressure reconstruction is proposed based on the concept of a dimensionless pressure curve in the frequency domain. It is shown that cylinder pressure profiles, acquired over a wide range of engine speeds and loads, exhibit similarity. Hence, cylinder pressure traces collapse into a set of dimensionless curves within a narrow range after normalization in the frequency domain. The dimensionless pressure traces can be described by a curve-fit family, which can be used for reconstructing pressure diagrams back into the time domain at any desired condition. The accuracy associated with this method is analyzed and its application to engine heat transfer analysis is demonstrated.
Technical Paper

Effects of Engine Speed, Fueling Rate, and Combustion Phasing on the Thermal Stratification Required to Limit HCCI Knocking Intensity

2005-05-11
2005-01-2125
Thermal stratification has the potential to reduce pressure-rise rates and allow increased power output for HCCI engines. This paper systematically examines how the amount of thermal stratification of the core of the charge has to be adjusted to avoid excessive knock as the engine speed and fueling rate are increased. This is accomplished by a combination of multi-zone chemical-kinetics modeling and engine experiments, using iso-octane as the fuel. The experiments show that, for a low-residual engine configuration, the pressure traces are self-similar during changes to the engine speed when CA50 is maintained by adjusting the intake temperature. Consequently, the absolute pressure-rise rate measured as bar/ms increases proportionally with the engine speed. As a result, the knocking (ringing) intensity increases drastically with engine speed, unless counteracted by some means.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
Technical Paper

Modeling of Diesel Combustion and NO Emissions Based on a Modified Eddy Dissipation Concept

2004-03-08
2004-01-0107
This paper reports the development of a model of diesel combustion and NO emissions, based on a modified eddy dissipation concept (EDC), and its implementation into the KIVA-3V multidimensional simulation. The EDC model allows for more realistic representation of the thin sub-grid scale reaction zone as well as the small-scale molecular mixing processes. Realistic chemical kinetic mechanisms for n-heptane combustion and NOx formation processes are fully incorporated. A model based on the normalized fuel mass fraction is implemented to transition between ignition and combustion. The modeling approach has been validated by comparison with experimental data for a range of operating conditions. Predicted cylinder pressure and heat release rates agree well with measurements. The predictions for NO concentration show a consistent trend with experiments. Overall, the results demonstrate the improved capability of the model for predictions of the combustion process.
Technical Paper

Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potential of Fuel Stratification for Ignition Control

2004-03-08
2004-01-0557
An investigation has been conducted to determine the relative magnitude of the various factors that cause changes in combustion phasing (or required intake temperature) with changes in fueling rate in HCCI engines. These factors include: fuel autoignition chemistry and thermodynamic properties (referred to as fuel chemistry), combustion duration, wall temperatures, residuals, and heat/cooling during induction. Based on the insight gained from these results, the potential of fuel stratification to control combustion phasing was also investigated. The experiments were conducted in a single-cylinder HCCI engine at 1200 rpm using a GDI-type fuel injector. Engine operation was altered in a series of steps to suppress each of the factors affecting combustion phasing with changes in fueling rate, leaving only the effect of fuel chemistry.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
X