Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Impact of Traffic Conditions and Road Geometry on Real World Urban Emissions Using a SI Car

2007-04-16
2007-01-0308
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction and uphill/downhill road, and thereby the impact of road topography on emissions. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst could be monitored. Different turning movements (driving events) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was run until hot stable operating conditions were achieved before each test, thereby negating cold start effects.
Technical Paper

Influence of Catalyst and Exhaust System on Particulate Deposition and Release from an IDI Diesel Passenger Car under Real World Driving

2002-03-04
2002-01-1006
The influence of a diesel oxidation catalyst and a practical exhaust system with two silencers on the storage and release of particulates during cold start real world driving was investigated using a Ford 1.8 litre IDI Mondeo diesel passenger car. Particulates were sampled simultaneously at three points in the exhaust using an on-board gravimetric filter paper method. The test was carried out on two different on-road driving cycles: a simulated ECE 15 cycle to represent free moving low power city driving conditions, and a traffic jam and high speed suburban driving cycle. The results showed that the particulate matter was deposited in the oxidation catalyst during cold start and deposited in the exhaust system downstream of the catalyst throughout the test period. The particulate deposition and release downstream of the catalyst were influenced by the previous operational history of the vehicle.
Technical Paper

Study of the Emissions Generated at Intersections for a SI Car under Real World Urban Driving Conditions

2006-04-03
2006-01-1080
A precision in-vehicle tail-pipe emission measurement system was installed in a EURO1 emissions compliant SI car and used to investigate the variability in tail-pipe emission generation at an urban traffic junction. Exhaust gas and skin temperatures were also measured along the exhaust pipe of the instrumented vehicle, so the thermal characteristics and the efficiency of the catalyst monitored could be included in the analysis. Different turning movements (driving patterns) at the priority T-junction were investigated such as straight, left and right turns with and without stops. The test car was hot stable running conditions before each test, thereby negating cold start effects. To demonstrate the influence of the junction on tail-pipe emissions and fuel consumption, distance based factors were determined that compared the intersection drive-through measurements with steady speed (state) runs. Fuel consumption was increased at intersections by a factor of 1.3∼5.9.
Technical Paper

Influence of Ambient Temperature on Cold-start Emissions for a Euro 1 SI Car Using In-vehicle Emissions Measurement in an Urban Traffic Jam Test Cycle

2005-04-11
2005-01-1617
The influence of ambient temperature on exhaust emissions for an instrumented Euro 1 SI car was determined for urban congested traffic conditions. In UK cities cold-starting vehicles directly into congested traffic conditions is a common occurrence that is not currently taken into account when modeling urban traffic pollution. In-vehicle emission samples were taken directly from the exhaust, upstream and downstream of the catalyst, using the bag sampling technique. The first bag was for the cold start emissions and approximately the first 1.1 km of travel. The following three bags were with a hotter catalyst. The cold start tests were conducted over a year, with ambient temperatures ranging from 2°C to 30°C. The results showed that CO emissions for the cold start were reduced by 70% downstream of the catalyst when the ambient temperature rose from 2°C to 30°C. The corresponding hydrocarbon emissions were reduced by 41% and NOx emissions were increased by 90%.
Technical Paper

Quantifying the Effects of Traffic Calming on Emissions Using On-road Measurements

2005-04-11
2005-01-1620
The objective of this work was to determine the effect of one form of traffic calming on emissions. Traffic calming is aimed at reducing average vehicle speeds, especially in residential neighborhoods, often using physical road obstructions such as speed bumps, but it also results in a higher number of acceleration/deceleration events which in turn yield higher emissions. Testing was undertaken by driving a warmed-up Euro-1 spark ignition passenger car over a set of speed bumps on a level road, and then comparing the emissions output to a non-calmed level road negotiated smoothly at a similar average speed. For the emissions measurements, a novel method was utilized, whereby the vehicle was fitted with a portable Fourier Transform Infrared (FTIR) spectrometer, capable of measuring up to 51 different components in real-time on the road. The results showed that increases in emissions were much greater than was previously reported by other researchers using different techniques.
X