Refine Your Search

Topic

Author

Search Results

Journal Article

Closed-Loop Combustion Control of a HCCI Engine with Re-Breathing EGR System

2013-10-15
2013-32-9069
This study experimentally investigates the control system and the algorithm after constructing a HCCI combustion control system for the development of a small HCCI engine fuelled with Dimethyl Ether (DME). This system can control four throttles for the mixing ratio of three gases of in-cylinder (stoichiometric pre-mixture, hot EGR gas and cold EGR gas). At first, the combustion behavior for combustion phasing retarded operation with cold and hot EGR was examined. Then, the potential of model-based and feed back control for HCCI combustion with change of the demand of IMEP was investigated. In the end, the limit of combustion-phasing retard for IMEP and PRR was explored. Results shows that to get high IMEP with acceptable PRR and low coefficient of variation of IMEP, crank angle of 50% heat release (CA50) should be controlled at constant phasing in the expansion stroke. CA50 can be controlled by changing the ratio of pre-mixture, hot EGR gas and cold EGR gas with throttles.
Journal Article

A Potentiality of Dedicated EGR in SI Engines Fueled by Natural Gas for Improving Thermal Efficiency and Reducing NOx Emission

2014-11-11
2014-32-0108
Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Direct Heat Loss to Combustion Chamber Walls in a D.I. Diesel Engine-Development of Measurement Technique and Evaluation of Direct Heat Loss to Cylinder Liner Wall

2007-09-16
2007-24-0006
The purpose of this study is to clarify the state of heat loss to the cylinder liner of the tested engine of which piston and cylinder head were previously measured. The authors' group developed an original measurement technique of instantaneous surface temperature at the cylinder liner wall using thin-film thermocouples. The temperature was measured at 36 points in total. The instantaneous heat flux was calculated by heat transfer analysis using measurement results of the temperature at the wall. As a result, the heat loss ratio to all combustion chamber walls is evaluated except the intake and exhaust valves.
Technical Paper

An Investigation of Combustion Control Using EGR for Small and Light HCCI Engine Fuelled with DME

2007-07-23
2007-01-1876
The HCCI engine could offer low NOx, PM emissions and high efficiency. However the operation region of the HCCI combustion is limited because of the knocking at high load and the misfire at low load. Moreover the HCCI principle lacks direct combustion control and needs a system to control the combustion phasing with high accuracy. Today there exists various ways to control the HCCI combustion, such as Variable Valve Train, Variable Compression Ratio, Inlet Air Heating and Dual Fuels. However such variable mechanisms and Inlet Air Heating tend to be heavy and complex. Dual Fuels method needs two types of fuels and has a challenge in infrastructure. In this study, in order to develop a small and light HCCI engine, a simple HCCI combustion control system is proposed. DME (Di-methyl Ether) is used as the fuel to keep the structure small and light. In this system, the mixing ratio of three gases: stoichiometric pre-mixture, hot EGR gas and cold EGR gas is changed by only throttles.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

1990-02-01
900479
The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

An Investigation of the Effects of Fuel Inhomogeneity on the Pressure Rise Rate in HCCI engine using Chemiluminescence Imaging

2010-09-28
2010-32-0097
Theoretically, homogeneous charge compression engines (HCCI) are able to grant a high thermal efficiency, as well as a low NOx and particulate emissions. This ability is mainly due to the combustion process, which, contrary to both Diesel and Gasoline engine, is homogeneous in time and space within the combustion chamber. But despite these advantages, the engine operating condition is limited by the narrow boundaries of misfire at low load and knocking at high load. For that matter, one of the numerous ways of overcoming knocking is to deliberately create fuel inhomogeneities within the combustion chamber, since it has proved to lengthen combustion duration and to drastically reduce maximum pressure rise rate (PRR). Nevertheless, though the global effects of fuel inhomogeneities on PRR have been studied, we lack information that explains this phenomenon.
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Thermodynamic Characteristics of Premixed Compression Ignition Combustions

2001-05-07
2001-01-1891
Thermodynamic characteristics of premixed compression ignition combustions were clarified quantitatively by heat balance estimation. Heat balance was calculated from temperature, mole fractions of intake and exhaust gases, mass and properties of fuels. Heat balance estimation was conducted for three types of combustion; a conventional diesel combustion, a homogeneous charge compression ignition (HCCI) combustion; fuel is provided and mixed with air in an intake pipe in this case, and an extremely early injection type PREmixed lean DIesel Combustion (PREDIC). The results show that EGR should be applied for premixed compression ignition combustion to complete combustion at lower load conditions and to control ignition timing at higher load conditions. With an application of EGR, both HCCI and PREDIC showed low heat loss characteristics at lower load conditions up to 1/2 load.
Technical Paper

Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement

2004-06-08
2004-01-1902
In the HCCI Engine, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically, and has the possibility of affecting the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Two-dimensional images of the chemiluminescence were captured by using a framing camera with an optically accessible engine in order to understand the spatial distribution of the combustion. DME was used as a test fuel. By changing a device for mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition.
Technical Paper

The Effect of Knock on Heat Loss in Homogeneous Charge Compression Ignition Engines

2002-03-04
2002-01-0108
One of the problems in HCCI combustion is a knocking in higher load conditions. It governs the high load limit, and it is suggested that the knock increases heat loss[1], because it breaks the thermal boundary layer. But it is not clear how much knock affects on heat loss in the HCCI combustion in various conditions, such as ignition timing and load. The motivation of this study is to clarify the ratio of heat loss caused by knock in HCCI engines. The heat loss from zero-dimensional calculations with modified heat transfer coefficient, which is considering the effect of knock by adding a term of cylinder pressure rising rate dp/dt, agreed well with the results from the thermodynamic analysis in various conditions. And the results show that it is possible to avoid heat loss by knock by controlling the ignition timing at appropriate timing after T.D.C. and it will be possible to expand the load range if knock can be avoided.
Technical Paper

Combustion Analysis of Natural Gas in a Four Stroke HCCI Engine Using Experiment and Elementary Reactions Calculation

2003-03-03
2003-01-1089
Homogeneous charge compression ignition (HCCI) is regarded as the next generation combustion regime in terms of high thermal efficiency and low emissions. It is difficult to control autoignition and combustion because they are controlled primarily by the chemical kinetics of air/fuel mixture. In this study, it was investigated the characteristics of autoignition and combustion of natural gas in a four-stroke HCCI engine using experiment and elementary reactions calculation. The influence of equivalence ratio, intake temperature, intake pressure and engine speed on autoignition timing, autoignition temperature, combustion duration and the emissions of THC, CO, CO2 were investigated. And also, to clarify the influence of n-butane on autoignition and combustion of natural gas, it was changed the blend ratio of n-butane from 0 mol% to 10 mol% in methane / n-butane / air mixtures.
Technical Paper

Investigation of Cycle-to-Cycle Variation of Turbulent Flow in a High-Tumble SI Engine

2017-10-08
2017-01-2210
The thermal efficiency of a spark-ignition (SI) engine must be improved to reduce both environmental load and fuel consumption. Although lean SI engine operation can strongly improve thermal efficiency relative to that of stoichiometric SI operation, the cycle-to-cycle variation (CCV) of combustion increases with the air dilution level. Combustion CCV is caused by CCVs of many factors, such as EGR, spark energy, air-fuel ratio, and in-cylinder flow structure related to engine speed. This study focuses on flow structures, especially the influence of a tumble structure on flow fluctuation intensity near ignition timing. We measured the flow field at the vertical center cross section of an optically accessible high-tumble flow engine using time-resolved particle image velocimetry. There are many factors considered to be sources of CCV, we analyzed three factors: the intake jet distribution, distribution of vortex core position and trajectory of the fluid particle near the spark plug.
Technical Paper

An Investigation of the Potential of EGR stratification for Reducing Pressure Rise Rate in HCCI Combustion by using Rapid Compression Machine

2011-08-30
2011-01-1762
HCCI (Homogeneous Charge Compression Ignition) engine is able to achieve low NOx and particulate emissions as well as high efficiency. However, its operation range is limited by the knocking at high load, which is the consequence of excessively rapid pressure rises. It has been suggested that making thermal or fuel inhomogeneities can be used to solve this problem, since these inhomogeneities have proved to create different auto-ignition timing zones. It has also been suggested that EGR (Exhaust Gas Recirculation) has a potential to reduce pressure rise rate. But according to a past report, it was concluded that under the same fueling ratio and CA50 with different initial temperature and EGR ratio, the maximum PRR is almost constant. The purpose of this study is to investigate the fundamental effects of EGR. First, I considered EGR homogeneous charge case. In this case, the effects of EGR and its components like CO₂, H₂O or N₂ on HCCI combustion process is argued.
Technical Paper

Study on Auto-Ignition and Combustion Mechanism of HCCI Engine

2004-09-27
2004-32-0095
In the HCCI (Homogeneous Charge Compression Ignition) engine, a mixture of fuel and air is supplied to the cylinder and auto-ignition occurs resulting from compression. This method can expand the lean flammability limit, realizing smokeless combustion and also having the potential for realizing low NOx and high efficiency. The optimal ignition timing is necessary in order to keep high thermal efficiency. The Ignition in the HCCI engine largely depends on the chemical reaction between the fuel and the oxidizer. Physical methods in conventional engines cannot control it, so a chemical method is demanded. Combustion duration is maintained properly to avoid knocking. In addition, the amount of HC and CO emissions must be reduced. The objective of this study is to clarify the following through calculations with detailed chemical reactions and through experiment with the 2-stroke HCCI engine: the chemical reaction mechanism, and HC and CO emission mechanisms.
Technical Paper

Effects of Flame Motion and Temperature on Local Wall Heat Transfer in a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1992-10-01
922208
Local heat flux from the flame to the combustion chamber wall, q̇, was measured the wall surfaces of a rapid compression-expansion machine which can simulate diesel combustion. Temperature of the flame zone, T1, was calculated by a thermodynamic two-zone model using measured values of cylinder pressure and flame volume. A local heat transfer coefficient was proposed which is defined as q̇/(T1-Tw). Experiments showed that the local heat transfer coefficient depends slightly on the temperature difference, T1-Tw, but depends significantly on the velocity of the flame which contacts the wall surface.
Technical Paper

Combustion Analysis of Methanol-Fueled Active Thermo-Atmosphere Combustion (ATAC) Engine Using a Spectroscopic Observation

1994-03-01
940684
To analyze the combustion mechanism of the so-called Active Thermo-Atmosphere Combustion (ATAC) in a two-stroke S.I. engine, a measuring system to obtain images of radical luminescence in the combustion chamber was developed. The ATAC engine tested was equipped with a quartz windows as the cylinder head. The instantaneous luminescence from radical species was observed using an image intensifier with a single band pass filter for both conventional and ATAC operating conditions. At ATAC operation, emissions from OH radicals were observed before heat release began, and after that, emissions from CH were observed. It was found that the ignition was initiated over the entire area of the combustion chamber and “bulk-like” and/or “non propagating” combustion occurred during ATAC engine operation.
X