Refine Your Search

Search Results

Viewing 1 to 12 of 12
Standard

GUIDELINES FOR LABORATORY CYCLIC CORROSION TEST PROCEDURES FOR PAINTED AUTOMOTIVE PARTS

1993-10-13
HISTORICAL
J1563_199310
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Guidelines for Laboratory Cyclic Corrosion Test Procedures for Painted Automotive Parts

2016-04-05
CURRENT
J1563_201604
These guidelines are intended for those engineers and scientists who evaluate the corrosion performance of painted automotive parts in laboratory cyclic tests. The guidelines are intended to help ensure that the results of the tests can be used to reach conclusions concerning the variables under study without being confounded by the test procedure itself. The guidelines also serve as a means to assist users of this type of test in obtaining good inter-laboratory agreement of results.
Standard

Method for Evaluating the Paintable Characteristics of Automotive Sealers

2013-07-09
CURRENT
J1800_201307
This SAE Recommended Practice sets forth a method for testing and evaluating the paintable characteristics of automotive sealers. This document contains three samples preparation procedures: Method #1: Topcoat over cured primer and cured sealer Method #2: Topcoat over cured sealer Method #3: Topcoat over uncured sealer
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2003-12-03
HISTORICAL
J2609_200312
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Multi-Dimensional Thermal Properties of Insulated Heat Shield Material Systems

2018-08-24
CURRENT
J2609_201808
This test method measures the system material properties of an insulated formed heat shield under in-vehicle conditions. While the material properties of the individual components can often be determined via existing test methods, the system properties of the entire composite is typically much harder to ascertain (especially for multi-layer shields). System material properties include thermal conductivity in the lateral or in-plane (x) direction, thermal conductivity through the thickness or perpendicular (y), surface emissivity on the top and bottom sides of the shield and specific heat of the shield material.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2007-06-15
HISTORICAL
J2800_200706
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

Laboratory Corrosion/Fatigue Testing of Vehicle Suspension Coil Springs

2016-04-01
CURRENT
J2800_201604
This lab test procedure should be used when evaluating the combined corrosion and fatigue performance for a particular coating system, substrate, process and design. The test is intended to provide an A to B comparison of a proposed coil spring design versus an existing field validated coil spring when subjected to the combined effects of corrosion and fatigue. The corrosion mechanisms covered by this test include general, cosmetic and pitting corrosion. Fatigue testing covers the maximum design stress and/or stress range of the coil spring design (typically defined as excursion from jounce to rebound positions in a vehicle). The effects of gravel and heat are simulated by pre-conditioning the springs prior to fatigue testing. Time dependant corrosion mechanisms such as stress corrosion cracking are not addressed with this test.
Standard

METHOD OF VISCOSITY TEST FOR AUTOMOTIVE TYPE ADHESIVES, SEALERS, AND DEADENERS

1995-08-01
HISTORICAL
J1524_199508
This SAE Recommended Practice contains a series of test methods for use in measuring the viscosity of automotive-type adhesives, sealers, and deadeners. The test methods which are contained in this document are as follows: 1.1 Brookfield® Method 1.2 Castor-Severs Rheometer or Pressure Flowmeter 1.3 Penetrometer 1.4 Capillary Rheometer 1.5 Plate Rheometers
Standard

Method of Viscosity Test for Automotive Type Adhesives, Sealers, and Deadeners

2021-01-07
CURRENT
J1524_202101
This SAE Recommended Practice contains a series of test methods for use in measuring the viscosity of automotive-type adhesives, sealers, and deadeners. The test methods which are contained in this document are as follows: 1.1 Brookfield® Method 1.2 Castor-Severs Rheometer or Pressure Flowmeter 1.3 Penetrometer 1.4 Capillary Rheometer 1.5 Plate Rheometers
Standard

Performance Test Procedure - Ball Joints and Spherical Rod Ends

2012-10-15
CURRENT
J1367_201210
The purpose of this test procedure is to provide a uniform method of testing commercial spherical rod end bearings to determine their performance characteristics under specific application situations. This procedure is an extension of the dimensional requirements for spherical rod end bearings as set forth in SAE J1120 and J1259. The loads, number of cycles, definition of failure, etc., are to be agreed to by the user and supplier. This procedure can also be used as the basis for testing ball joints covered by SAE J490.
Standard

Laboratory Cyclic Corrosion Test

2003-12-01
HISTORICAL
J2334_200312
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
Standard

Laboratory Cyclic Corrosion Test

2016-04-05
CURRENT
J2334_201604
The SAE J2334 lab test procedure should be used when determining corrosion performance for a particular coating system, substrate, process, or design. Since it is a field-correlated test, it can be used as a validation tool as well as a development tool. If corrosion mechanisms other than cosmetic or general corrosion are to be examined using this test, field correlation must be established.
X