Refine Your Search

Topic

Search Results

Standard

Abrasion Resistance Testing - Vehicle Exterior Graphics and Pin Striping

2021-01-07
CURRENT
J1847_202101
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

ABRASION RESISTANCE TESTING—VEHICLE EXTERIOR GRAPHICS AND PIN STRIPING

1989-06-01
HISTORICAL
J1847_198906
This SAE Recommended Practice applies to the abrasion resistance testing of decorative tapes, graphics, and pin striping. It may also have relevance to certain vehicle labels and plastic wood grain film. The resistance to abrasive damage is judged qualitatively by its effect on the legibility, pattern, and color of the graphic marking. This recommended practice is intended as a guide toward standard practice but may be subject to frequent change to keep pace with experience and technical advances. This should be kept in mind when considering the use of this recommended practice.
Standard

Induction Cure Test for Metal Bonding Adhesives

2021-01-07
CURRENT
J1851_202101
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

INDUCTION CURE TEST FOR METAL BONDING ADHESIVES

1987-05-01
HISTORICAL
J1851_198705
This SAE Recommended Practice defines a procedure for determining the adhesion strength characteristics of heat-cured metal bonding adhesives subjected to induction heating.
Standard

PNEUMATIC SPRING TERMINOLOGY

1989-06-01
HISTORICAL
J511_198906
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

Pneumatic Spring Terminology

2016-04-01
CURRENT
J511_201604
This pneumatic spring terminology has been developed to assist engineers and designers in the preparation of specifications and descriptive material relating to pneumatic springs and their components. It does not include gas supply or control systems.
Standard

SOFTENING POINT OF INTERIOR TRIM ADHESIVES

1994-04-21
HISTORICAL
J1700_199404
This SAE Recommended Practice shall be used to determine the temperature at which an adhesive softens to the point at which it no longer can support a given load.
Standard

Softening Point of Interior Trim Adhesives

2021-01-07
CURRENT
J1700_202101
This SAE Recommended Practice shall be used to determine the temperature at which an adhesive softens to the point at which it no longer can support a given load.
Standard

PEEL STRENGTH OF SOFT TRIM ADHESIVES

1994-04-21
HISTORICAL
J1679_199404
This SAE Recommended Practice shall be used to determine the peel strength achieved by an adhesive when used to bond various decorative, flexible substrates such as cloth supported vinyl or carpet, to rigid (steel), semi-rigid (SMC plastic), or other similar substrates.
Standard

Peel Strength of Soft Trim Adhesives

2021-01-07
CURRENT
J1679_202101
This SAE Recommended Practice shall be used to determine the peel strength achieved by an adhesive when used to bond various decorative, flexible substrates such as cloth supported vinyl or carpet, to rigid (steel), semi-rigid (SMC plastic), or other similar substrates.
Standard

Peel Adhesion Test for Glass to Elastomeric Material for Automotive Glass Encapsulation

2021-01-07
CURRENT
J1907_202101
This recommended practice defines a procedure for the construction and testing of a 180 deg peel specimen for the purpose of determining the bondability of glass to elastomeric material in automotive modular glass. This test method suggests that elastomeric material of less than 172 mpa modulus be used as the encapsulating material. The present practice of encapsulating automotive glass is described as molded-in-place elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with the cured elastomeric material bonded to the perimeter of the glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

PEEL ADHESION TEST FOR GLASS TO ELASTOMERIC MATERIAL FOR AUTOMOTIVE GLASS ENCAPSULATION

1988-10-01
HISTORICAL
J1907_198810
This recommended practice defines a procedure for the construction and testing of a 180 deg peel specimen for the purpose of determining the bondability of glass to elastomeric material in automotive modular glass. This test method suggests that elastomeric material of less than 172 mpa modulus be used as the encapsulating material. The present practice of encapsulating automotive glass is described as molded-in-place elastomeric material onto the outer edge of the glass using thermoplastic or thermosetting material that quickly sets in the mold. The glass is removed from the mold with the cured elastomeric material bonded to the perimeter of the glass. This encapsulated glass module can now be bonded with a sealant adhesive into the body opening of a vehicle.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO METRIC UNITS

1992-11-01
HISTORICAL
J1123_199211
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs For Motor Vehicle Suspension - Made to Metric Units

2016-04-05
CURRENT
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

UNDERVEHICLE COUPON CORROSION TESTS

1990-01-01
HISTORICAL
J1293_199001
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment.
Standard

Undervehicle Coupon Corrosion Tests

2016-04-05
CURRENT
J1293_201604
This document is a road test procedure for comparing the corrosion resistance of both coated and uncoated sheet steels in an undervehicle deicing salt environment.
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Compression and Extension Spring Terminology

2006-09-12
HISTORICAL
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Rated Suspension Spring Capacity

2004-10-25
CURRENT
J274_200410
The Rating Suspension Spring Capacity definition has been developed to assist engineers and designers in the preparation of specifications and descriptive material and values relating thereto.
X