Refine Your Search


Search Results

Technical Paper

The Virtual Driver: Integrating Task Planning and Cognitive Simulation with Human Movement Models

Digital human modeling has traditionally focused on the physical aspects of humans and the environments in which they operate. As the field moves towards modeling dynamic and more complex tasks, cognitive and perceptual aspects of the human's performance need to be considered. Cognitive modeling of complex tasks such as driving has commonly avoided the complexity of physical simulation of the human, distilling motor performance to motion execution times. To create a more powerful and flexible approach to the modeling of human/machine interaction, we have integrated a physical architecture of human motion (the Human Motion Simulation Ergonomics Framework—HUMOSIM) with a computational cognitive architecture (the Queueing network model human processor—QN–MHP). The new system combines the features of the two separate architectures and provides new capabilities that emerge from their integration.
Technical Paper

An Integrated Model of Gait and Transition Stepping for Simulation of Industrial Workcell Tasks

Industrial tasks performed by standing workers are among those most commonly simulated using digital human models. Workers often walk, turn, and take acyclic steps as they perform these tasks. Current h uman modeling tools lack the capability to simulate these whole body motions accurately. Most models simulate walking by replaying joint angle trajectories corresponding to a general gait pattern. Turning is simulated poorly if at all, and violations of kinematic constraints between the feet and ground are common. Moreover, current models do not accurately predict foot placement with respect to loads and other hand targets, diminishing the utility of the associated ergonomic analyses. A new approach to simulating stepping and walking in task-oriented activities is proposed. Foot placements and motions are predicted from operator and task characteristics using empirical models derived from laboratory data and validated using field data from an auto assembly plant.
Technical Paper

Predicting Force-Exertion Postures from Task Variables

Accurate representation of working postures is critical for ergonomic assessments with digital human models because posture has a dominant effect on analysis outcomes. Most current digital human modeling tools require manual manipulation of the digital human to simulate force-exertion postures or rely on optimization procedures that have not been validated. Automated posture prediction based on human data would improve the accuracy and repeatability of analyses. The effects of hand force location, magnitude, and direction on whole-body posture for standing tasks were quantified in a motion-capture study of 20 men and women with widely varying body size. A statistical analysis demonstrated that postural variables critical for the assessment of body loads can be predicted from the characteristics of the worker and task.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Modeling Population Distributions of Subjective Ratings

Most human figure models used in ergonomic analyses present postural comfort ratings based on joint angles, and present a single comfort score for the whole body or on a joint-by-joint basis. The source data for these ratings is generally derived from laboratory studies that link posture to ratings. Lacking in many of these models is a thorough treatment of the distribution of ratings for the population of users. Information about ratings distributions is necessary to make cost-effective tradeoffs when design changes affect subjective responses. This paper presents experimental and analytic methods used to develop distribution models for incorporating subjective rating data in ergonomic assessments.
Technical Paper

Assessing the Validity of Kinematically Generated Reach Envelopes for Simulations of Vehicle Operators

Assessments of reach capability using human figure models are commonly performed by exercising each joint of a kinematic chain, terminating in the hand, through the associated ranges of motion. The result is a reach envelope determined entirely by the segment lengths, joint degrees of freedom, and joint ranges of motion. In this paper, the validity of this approach is assessed by comparing the reach envelopes obtained by this method to those obtained in a laboratory study of men and women. Figures were created in the Jack human modeling software to represent the kinematic linkages of participants in the laboratory study. Maximum reach was predicted using the software's kinematic reach-envelope generation methods and by interactive manipulation. Predictions were compared to maximum reach envelopes obtained experimentally. The findings indicate that several changes to the normal procedures for obtaining maximum reach envelopes for seated tasks are needed.
Technical Paper

Redesigning Workstations Utilizing Motion Modification Algorithm

Workstation design is one of the most essential components of proactive ergonomics, and digital human models have gained increasing popularity in the analysis and design of current and future workstations (Chaffin 2001). Using digital human technology, it is possible to simulate interactions between humans and current or planned workstations, and conduct quantitative ergonomic analyses based on realistic human postures and motions. Motion capture has served as the primary means by which to acquire and visualize human motions in a digital environment. However, motion capture only provides motions for a specific person performing specific tasks. Albeit useful, at best this allows for the analysis of current or mocked-up workstations only. The ability to subsequently modify these motions is required to efficiently evaluate alternative design possibilities and thus improve design layouts.
Technical Paper

Methods for Laboratory Investigation of Truck and Bus Driver Postures

Few studies have systematically examined the effects of truck and bus workstation geometry on driver posture and position. This paper presents methods for determining drivers' postural responses and preferred component locations using a reconfigurable vehicle mockup. Body landmark locations recorded using a three-dimensional digitizer are used to compute a skeletal-linkage representation of the drivers' posture. A sequential adjustment procedure is used to determine the preferred positions and orientations of key components, including the seat, steering wheel, and pedals. Data gathered using these methods will be used to create new design tools for trucks and buses, including models of driver-selected seat position, eye location, and needed component adjustment ranges. The results will also be used to create accurate posture-prediction models for use with human modeling software.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
Technical Paper

The HUMOSIM Ergonomics Framework: A New Approach to Digital Human Simulation for Ergonomic Analysis

The potential of digital human modeling to improve the design of products and workspaces has been limited by the time-consuming manual manipulation of figures that is required to perform simulations. Moreover, the inaccuracies in posture and motion that result from manual procedures compromise the fidelity of the resulting analyses. This paper presents a new approach to the control of human figure models and the analysis of simulated tasks. The new methods are embodied in an algorithmic framework developed in the Human Motion Simulation (HUMOSIM) laboratory at the University of Michigan. The framework consists of an interconnected, hierarchical set of posture and motion modules that control aspects of human behavior, such as gaze or upper-extremity motion. Analysis modules, addressing issues such as shoulder stress and balance, are integrated into the framework.
Technical Paper

A Task-Based Stepping Behavior Model for Digital Human Models

Cyclical stepping (gait) has been studied extensively. Some of these results are reflected in the straight and curved path step-following algorithms in commercial digital human modeling (DHM) implementations. With the aid of these algorithms, DHM users define start, intermediate, and end path points and the software generates a walking-like motion along the path. Most of these algorithms have substantial limitations, among them that the figures exhibit “foot skate,” meaning that the kinematic constraint of foot contact with the ground is not respected. Turning is accomplished by pivoting the entire figure, rather than through realistic lower-extremity motions. The simulation of the non-cyclical stepping motions accompanying manual material handling pickup and delivery tasks requires manual manikin manipulation. This paper proposes a paradigm for the simulation of stepping behavior in digital human models based on a model of foot placements and motions.
Technical Paper

A New Database of Child Anthropometry and Seated Posture for Automotive Safety Applications

This paper presents a laboratory study of body dimensions, seated posture, and seatbelt fit for children weighing from 40 to 100 lb (18 to 45 kg). Sixty-two boys and girls were measured in three vehicle seats with and without each of three belt-positioning boosters. In addition to standard anthropometric measurements, three-dimensional body landmark locations were recorded with a coordinate digitizer in sitter-selected and standardized postures. This new database quantifies the vehicle-seated postures of children and provides quantitative evidence of the effects of belt-positioning boosters on belt fit. The data will provide guidance for child restraint design, crash dummy development, and crash dummy positioning procedures.
Technical Paper

Cervical Spine Geometry in the Automotive Seated Posture: Variations with Age, Stature, and Gender

In the mid 1970s, UMTRI investigated the biomechanical properties of the head and neck using 180 “normal” adult subjects selected to fill eighteen subject groups based on age (young, mid-aged, older), gender, and stature (short, medium, and tall by gender). Lateral-view radiographs of the subjects’ cervical spines and heads were taken with the subjects seated in a simulated automotive neutral posture, as well as with their necks in full-voluntary flexion and full-voluntary extension. Although the cervical spine and lower head geometry were previously measured manually and documented, new technologies have enabled computer digitization of the scanned x-ray images and a more comprehensive and detailed analysis of the variation in cervical spine and lower head geometry with subject age, stature, and gender. After scanning the radiographic images, 108 skeletal landmarks on the cervical vertebrae and 10 head landmarks were digitized.
Technical Paper

Torso Kinematics in Seated Reaches

Simulations of humans performing seated reaches require accurate descriptions of the movements of the body segments that make up the torso. Data to generate such simulations were obtained in a laboratory study using industrial, auto, and truck seats. Twelve men and women reached to push-button targets located throughout their right-hand reach envelopes as their movements were recorded using an electromagnetic tracking system. The data illustrate complex patterns of motion that depend on target location and shoulder range of motion. Pelvis motion contributes substantially to seated reach capability. On padded seats, the effective center of rotation of the pelvis is often within the seat cushion below the pelvis rather than at the hips. Lumbar spine motions differ markedly depending on the location of the target. A categorization of reach targets into four zones differentiated by torso kinematics is proposed.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

Understanding Work Task Assessment Sensitivity to the Prediction of Standing Location

Digital human models (DHM) are now widely used to assess worker tasks as part of manufacturing simulation. With current DHM software, the simulation engineer or ergonomist usually makes a manual estimate of the likely worker standing location with respect to the work task. In a small number of cases, the worker standing location is determined through physical testing with one or a few workers. Motion capture technology is sometimes used to aid in quantitative analysis of the resulting posture. Previous research has demonstrated the sensitivity of work task assessment using DHM to the accuracy of the posture prediction. This paper expands on that work by demonstrating the need for a method and model to accurately predict worker standing location. The effect of standing location on work task posture and the resulting assessment is documented through three case studies using the Siemens Jack DHM software.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Modeling Ascending and Descending Stairs Using the Human Motion Simulation Framework

The Human Motion Simulation Framework (Framework) is a hierarchical set of algorithms for predicting and analyzing task-oriented human motion. The Framework was developed to improve the performance of commercial human modeling software by increasing the accuracy of predicted motions and the speed of generating simulations. This paper presents the addition of stair ascending and descending to the Transition Stepping and Timing (Transit) model, a component of the Framework that predicts gait and acyclic stepping.