Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Technical Paper

Distance Cues and Fields of View in Rear Vision Systems

2006-04-03
2006-01-0947
The effects of image size on perceived distance have been of concern for convex rearview mirrors as well as camera-based rear vision systems. We suggest that the importance of image size is limited to cases-such as current rearview mirrors-in which the field of view is small. With larger, richer fields of view it is likely that other distance cues will dominate image size, thereby substantially diminishing the concern that distortions of size will result in distortions of distance perception. We report results from an experiment performed in a driving simulator, with static simulated rearward images, in which subjects were asked to make judgments about the distance to a rearward vehicle. The images showed a field of view substantially wider than provided by any of the individual rearview mirrors in current systems. The field of view was 38 degrees wide and was presented on displays that were either 16.7 or 8.5 degrees wide, thus minifying images by factors of 0.44 or 0.22.
Technical Paper

Quantifying the Direct Field of View when Using Driver-Side Rearview Mirrors

1999-03-01
1999-01-0656
In a static field study we tested drivers’ abilities to detect vehicles in the periphery of their direct fields of view while they gazed toward the driver-side exterior rearview mirror of a passenger car. The results indicate that both younger and older drivers can detect vehicles with reasonable efficiency even in far peripheral vision. However, the results also indicate that using peripheral vision entails a cost in terms of lengthened reaction time. Although that cost seems modest in comparison with the normal durations of glances to rearview mirrors and of direct looks to the rear, it is not clear from this study alone how the reaction time cost might influence the scanning strategies that drivers actually use in driving. The present study was oriented more to testing drivers’ basic visual capabilities than to outlining their overall strategies.
Technical Paper

Distance Perception in Camera-Based Rear Vision Systems

2002-03-04
2002-01-0012
The importance of eye-to-display distance for distance perception in rear vision may depend on the type of display. At least in terms of its influence on the effective magnification of images, eye-to-display distance is almost irrelevant for flat rearview mirrors, but it is important for convex rearview mirrors and for other displays, such as video displays, that create images closer to the driver than the actual objects of interest. In the experiment we report here, we investigate the influence of eye-to-display distance on distance perception with both flat rearview mirrors and camera-based video displays. The results indicate that a simple model of distance perception based on the visual angles of images is not very successful. Visual angles may be important, but it appears that relationships between images of distant objects and the frames of the displays are also important. Further work is needed to fully understand how drivers might judge distance in camera-based displays.
Technical Paper

Driver Workload for Rear-Vision Systems With Single Versus Multiple Display Locations

2005-04-11
2005-01-0445
Advances in camera and display technology have increased interest in using camera-based systems for all rear-vision functions. The flexibility of camera-based systems is unprecedented, and raises the possibility of providing drivers with fields of view that are very different from, and potentially much better than, those of conventional rearview mirrors. Current fields of view are based on a combination of driver needs and the practical constraints of mirror systems. In order to make the best use of the greater flexibility offered by cameras, a reassessment of drivers' needs for rear vision is needed. A full reassessment will require consideration of many factors. This paper offers a preliminary analysis of one of those factors: the visual workload involved in using rear-vision systems with single versus multiple displays.
Technical Paper

Acceptance of Nonplanar Rearview Mirrors by U.S. Drivers

1998-02-23
980919
Five different nonplanar mirrors were evaluated as driver-side rearview mirrors in a field test using Ford employees. Two were spherical convex (differing in radius of curvature), and three were aspheric (differing primarily in the proportion of their surfaces over which radius of curvature was variable). Each participant drove for four weeks with one of the nonplanar mirrors. At three times during the test the participants filled out questionnaires concerning their experience with the mirrors. Driver preferences for the experimental mirrors increased moderately between surveys at one week and at four weeks. At four weeks, all five nonplanar mirrors were preferred to the standard flat mirror by at least a small amount. For each of the five mirror designs there was a large range of opinion. Most notably, a small number of people strongly disliked the aspheric design that involved the largest variable-radius area.
Technical Paper

The Role of Binocular Information for Distance Perception in Rear-Vision Systems

2001-03-05
2001-01-0322
New developments in the use of two-dimensional displays to supplement driver vision have made it more important to understand the roles that various distance cues play in driver perception of distance in more conventional ways of viewing the road, including direct vision and viewing through rearview mirrors. The current study was designed to investigate the role of binocular distance cues for perception of distance in rearview mirrors. In a field experiment, we obtained data to estimate the importance of binocular cues for distance judgments under conditions representative of real-world traffic. The results indicate that, although binocular cues are potentially available to drivers, these cues probably play little or no role in distance judgments in rearview mirrors in normal driving situations.
Technical Paper

Rearview Mirror Reflectivity and the Quality of Distance Information Available to Drivers

1993-03-01
930721
In two experiments, we examined the possibility that rearview mirror reflectivity influences drivers' perceptions of the distance to following vehicles. In the first experiment, subjects made magnitude estimates of the distance to a vehicle seen in a variable-reflectance rearview mirror. Reflectivity had a significant effect on the central tendency of subjects' judgments: distance estimates were greater when reflectivity was lower. There was no effect of reflectivity on the variability of judgments. In the second experiment, subjects were required to decide, under time pressure, whether a vehicle viewed in a variable-reflectance rearview mirror had been displaced toward them or away from them when they were shown two views of the vehicle in quick succession. We measured the speed and accuracy of their responses. Mirror reflectivity did not affect speed or accuracy, but it did cause a bias in the type of errors that subjects made.
Technical Paper

Fog Lamps: Frequency of Installation and Nature of Use

1997-02-24
970657
The goal of this study was to provide information about the frequency of installation and use of fog lamps. Two surveys were performed. In the first one, installation of fog lamps was estimated by a survey of parked vehicles in two iarge shopping centers. The second survey studied the usage of fog lamps during daytime and nighttime, under clear, rainy, or foggy conditions. In this survey, an observer in a moving vehicle noted the types of lamps that were energized on the fronts of oncoming vehicles, and whether fog lamps were installed at all. The main findings are: (1) The best estimate of the current frequency of installation of fog lamps in southeast Michigan is about 13%. (2) During daytime, the usage of fog lamps increased with deterioration in atmospheric conditions, with the usage reaching 50% of all installed fog lamps during moderate-to-heavy fog.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

Driver Perceptual Adaptation to Nonplanar Rearview Mirrors

1996-02-01
960791
This study examined perceptual adaptation to nonplanar (spherical convex and aspheric) rearview mirrors. Subjects made magnitude estimates of the distance to a car seen in a rearview mirror. Three different mirrors were used: plane, aspheric (with a large spherical section having a radius of 1400 mm), and simple convex (with a radius of 1000 mm). Previous research relevant to perceptual adaptation to nonplanar mirrors was reviewed. It was argued that, in spite of some cases of explicit interest in the process of learning to use nonplanar mirrors, previous research has not adequately addressed the possibility of perceptual adaptation. The present experiment involved three phases: (1) a pretest phase in which subjects made distance judgments but received no feedback, (2) a training phase in which they made judgments and did receive feedback, and (3) a posttest phase with the same procedure as the pretest phase.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Effects of Large-Radius Convex Rearview Mirrors on Driver Perception

1997-02-24
970910
The U.S. currently requires that reai-view mirrors installed as original equipment in the center and driver-side positions be flat. There has recently been interest in using nonplanar mirrors in those positions, including possibly mirrors with large radii (over 2 m). This has provided additional motivation to understand the effects of mirror curvature on drivers' perceptions of distance and speed. This paper addresses this issue by (1) reviewing the concepts from perceptual theory that are most relevant to predicting and understanding how drivers judge distance in nonplanar rearview mirrors, and (2) reviewing the past empirical studies that have manipulated mirror curvature and measured some aspect of distance perception. The effects of mirror curvature on cues for distance perception do not lead to simple predictions. The most obvious model is one based on visual angle, according to which convex mirrors should generally lead to overestimation of distances.
Technical Paper

On-the-Road Visual Performance with Electrochromic Rearview Mirrors

1995-02-01
950600
This study was part of a series of studies on variable-reflectance rearview mirrors. Previous work included laboratory studies of human visual performance, field collection of photometric data, and mathematical modeling of the visual benefits of variable-reflectance mirrors. We extended that work in this study by collecting photometric and human-performance data while subjects drove in actual traffic. Three mirror conditions were investigated: (1) fixed-reflectance mirrors in the center and driver-side positions, (2) a variable-reflectance mirror in the center with a fixed-reflectance mirror on the driver side, and (3) variable-reflectance mirrors in both positions. The fixed and variable reflectivities were produced by the same mirrors by overriding the circuitry that normally controlled reflectance in the variable mode.
Technical Paper

Current Status and Future Prospects for Nonplanar Rearview Mirrors

2000-03-06
2000-01-0324
The Federal Motor Vehicle Safety Standards currently require driver-side rearview mirrors to be flat. For rearview mirrors of typical size, this requirement normally results in a blind zone on the driver side that is large enough to conceal an average size passenger car. In recent years a number of studies have suggested that nonplanar rearview mirrors may be an effective solution to this problem. This paper reviews the evidence on possible effectiveness of nonplanar mirrors, assesses the strength of that evidence, and makes tentative recommendations. The main conclusion is that the use of nonplanar mirrors would probably result in a net gain in safety, but that the effectiveness of the mirrors is likely to depend on details of how they are implemented. Issues that should be resolved by additional research (some of which is already underway) are: (1) How would U.S. drivers respond to a mixed fleet of vehicles, some of which had flat mirrors and some of which had nonplanar mirrors?
Technical Paper

Driving with HID Headlamps: A Review of Research Findings

2003-03-03
2003-01-0295
High-intensity discharge (HID) headlamps have several advantages over tungsten-halogen headlamps, including greater light efficiency (lumens per watt) and longer life. However, from the safety point of view, the primary attraction of HID headlamps is that, because they produce more total light, they have the potential to provide more useful illumination to the driver. At the same time, there are concerns with the effects of HID illumination on perception of the colors of important objects and glare to oncoming traffic. This paper reviews research evidence that we have accumulated over the past 14 years concerning the potential benefits and drawbacks associated with the use of HID headlighting. We conclude that the evidence strongly supports the use of well-designed HID headlamps.
Technical Paper

Framing Effects on Distance Perception in Rear-Vision Displays

2003-03-03
2003-01-0298
The increasing availability of camera-based displays for indirect vision in vehicles is providing new opportunities to supplement drivers' direct views of the roadway and surrounding traffic, and is also raising new issues about how drivers perceive the positions and movements of surrounding vehicles. We recently reported evidence that drivers' perception of the distance to rearward vehicles seen in camera-based displays is affected not only by the visual angles subtended by the images of those vehicles, but also by the sizes of those images relative to the sizes of the displays within which they are seen (an influence that we have referred to as a framing effect). There was also evidence for a similar, but weaker, effect with rearview mirrors.
Technical Paper

The Roles of Camera-Based Rear Vision Systems and Object-Detection Systems: Inferences from Crash Data

2004-03-08
2004-01-1758
Advances in electronic countermeasures for lane-change crashes, including both camera-based rear vision systems and object-detection systems, have provided more options for meeting driver needs than were previously available with rearview mirrors. To some extent, human factors principles can be used to determine what countermeasures would best meet driver needs. However, it is also important to examine sets of crash data as closely as possible for the information they may provide. We review previous analyses of crash data and attempt to reconcile the implications of these analyses with each other as well as with general human factors principles. We argue that the data seem to indicate that the contribution of blind zones to lane-change crashes is substantial.
X