Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Journal Article

Characteristics of Isopentanol as a Fuel for HCCI Engines

2010-10-25
2010-01-2164
Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C 4 -C 5 alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C 5 alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity.
Journal Article

Isolating the Effects of EGR on HCCI Heat-Release Rates and NOX Emissions

2009-11-02
2009-01-2665
High-load HCCI operation is typically limited by rapid pressure-rise rates (PRR) and engine knock caused by an overly rapid heat-release rate (HRR). Exhaust gas recirculation (EGR) is commonly used in HCCI engines, and it is often stated in the literature that charge dilution with EGR (or high levels of retained residuals) is beneficial for reducing the PRR to allow higher loads without knock. However, EGR/retained-residuals affect other operating parameters such as combustion phasing, which can in turn influence the PRR independently from any effect of the EGR gases themselves. Because of the multiple effects of EGR, its direct benefit for reducing the PRR is not well understood. In this work, the effects of EGR on the PRR were isolated by controlling the combustion phasing independently from the EGR addition by adjusting the intake temperature. The experiments were conducted using gasoline as the fuel at a 1200 rpm operating condition.
Journal Article

Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline

2010-04-12
2010-01-1086
The potential of boosted HCCI for achieving high loads has been investigated for intake pressures (Piⁿ) from 100 kPa (naturally aspirated) to 325 kPa absolute. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) equipped with a compression-ratio 14 piston at 1200 rpm. The intake charge was fully premixed well upstream of the intake, and the fuel was a research-grade (R+M)/2 = 87-octane gasoline with a composition typical of commercial gasolines. Beginning with Piⁿ = 100 kPa, the intake pressure was systematically increased in steps of 20 - 40 kPa, and for each Piⁿ, the fueling was incrementally increased up to the knock/stability limit, beyond which slight changes in combustion conditions can lead to strong knocking or misfire. A combination of reduced intake temperature and cooled EGR was used to compensate for the pressure-induced enhancement of autoignition and to provide sufficient combustion-phasing retard to control knock.
Journal Article

Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost

2010-04-12
2010-01-0338
The characteristics of ethanol autoignition and the associated HCCI performance are examined in this work. The experiments were conducted over wide ranges of engine speed, load and intake boost pressure (Piⁿ) in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston. The data show that pure ethanol is a true single-stage ignition fuel. It does not exhibit low-temperature heat release (LTHR), not even for boosted operation. This makes ethanol uniquely different from conventional distillate fuels and offers several benefits: a) The intake temperature (Tiⁿ) does not have to be adjusted much with changes of engine speed, load and intake boost pressure. b) High Piⁿ can be tolerated without running out of control authority because of an excessively low Tiⁿ requirement. However, by maintaining true single-stage ignition characteristics, ethanol also shows a relatively low temperature-rise rate just prior to its hot ignition point.
Journal Article

Comparison of Different Boosting Strategies for Homogeneous Charge Compression Ignition Engines - A Modeling Study

2010-04-12
2010-01-0571
Boosted Homogeneous Charge Compression Ignition (HCCI) has been modeled and has demonstrated the potential to extend the engine's upper load limit. A commercially available engine simulation software (GT-PowerÖ) coupled to the University of Michigan HCCI combustion and heat transfer correlations was used to model a 4-cylinder boosted HCCI engine with three different boosting configurations: turbocharging, supercharging and series turbocharging. The scope of this study is to identify the best boosting approach in order to extend the HCCI engine's operating range. The results of this study are consistent with the literature: Boosting helps increase the HCCI upper load limit, but matching of turbochargers is a problem. In addition, the low exhaust gas enthalpy resulting from HCCI combustion leads to high pressures in the exhaust manifold increasing pumping work. The series turbocharging strategy appears to provide the largest load range extension.
Journal Article

Investigation of the Sources of Combustion Noise in HCCI Engines

2014-04-01
2014-01-1272
This article presents an investigation of the sources combustion-generated noise and its measurement in HCCI engines. Two cylinder-pressure derived parameters, the Combustion Noise Level (CNL) and the Ringing Intensity (RI), that are commonly used to establish limits of acceptable operation are compared along with spectral analyses of the pressure traces. This study focuses on explaining the differences between these two parameters and on investigating the sensitivity of the CNL to the ringing/knock phenomenon, to which the human ear is quite sensitive. Then, the effects of independently varying engine operating conditions such as fueling rate, boost pressure, and speed on both the CNL and RI are studied. Results show that the CNL is not significantly affected by the high-frequency components related to the ringing/knock phenomenon.
Journal Article

Effect of Ignition Improvers on the Combustion Performance of Regular-Grade E10 Gasoline in an HCCI Engine

2014-04-01
2014-01-1282
This study explores the use of two conventional ignition improvers, 2-ethylhexyl nitrate (EHN) and di-tert-butyl peroxide (DTBP), to enhance the autoignition of the regular gasoline in an homogeneous charge compression ignition (HCCI) engine at naturally aspirated and moderately boosted conditions (up to 180 kPa absolute) with a constant engine speed of 1200 rpm. The results showed that both EHN and DTBP are very effective for reducing the intake temperature (Tin) required for autoignition and for enhancing stability to allow a higher charge-mass fuel/air equivalence ratio (ϕm). On the other hand, the addition of these additives can also make the gasoline too reactive at some conditions, so significant exhaust gas recirculation (EGR) is required at these conditions to maintain the desired combustion phasing. Thus, there is a trade-off between improving stability and reducing the oxygen available for combustion when using ignition improvers to extend the high-load limit.
Journal Article

Detailed HCCI Exhaust Speciation and the Sources of Hydrocarbon and Oxygenated Hydrocarbon Emissions

2008-04-14
2008-01-0053
Detailed exhaust speciation measurements were made on an HCCI engine fueled with iso-octane over a range of fueling rates, and over a range of fuel-stratification levels. Fully premixed fueling was used for the fueling sweep. This sweep extended from a fuel/air equivalence ratio (ϕ) of 0.28, which is sufficiently high to achieve a combustion efficiency of 96%, down to a below-idle fueling rate of ϕ = 0.08, with a combustion efficiency of only 55%. The stratification sweep was conducted at an idle fueling rate, using an 8-hole GDI injector to vary stratification from well-mixed conditions for an early start of injection (SOI) (40°CA) to highly stratified conditions for an SOI well up the compression stroke (325°CA, 35°bTDC-compression). The engine speed was 1200 rpm. At each operating condition, exhaust samples were collected and analyzed by GC-FID for the C1 and C2 hydrocarbon (HC) species and by GC-MS for all other species except formaldehyde and acetaldehyde.
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Journal Article

Influence of EGR Quality and Unmixedness on the High-Load Limits of HCCI Engines

2009-04-20
2009-01-0666
This work explores how the high-load limits of HCCI are affected by fuel autoignition reactivity, EGR quality/composition, and EGR unmixedness for naturally aspirated conditions. This is done for PRF80 and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) with a CR = 14 piston installed. By operating at successively higher engine loads, five load-limiting factors were identified for these fuels: 1) Residual-NOx-induced run-away advancement of the combustion phasing, 2) EGR-NOx-induced run-away, 3) EGR-NOx/wall-heating induced run-away 4) EGR-induced oxygen deprivation, and 5) excessive partial-burn occurrence due to EGR unmixedness. The actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the EGR quality level (where high quality refers to the absence of trace species like NO, HC and CO, i.e. simulated EGR), the level of EGR unmixedness, and the selected pressure-rise rate (PRR).
Journal Article

Influence of Fuel Autoignition Reactivity on the High-Load Limits of HCCI Engines

2008-04-14
2008-01-0054
This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Journal Article

Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate

2008-04-14
2008-01-1081
Low-sulfur “clean” diesel fuel has been mandated in the US and Europe. However, quality of diesel fuel, particularly the sulfur content, varies significantly in other parts of the world. Due to logistical issues in various theaters of operation, the Army is often forced to rely on local fuel supplies, which exposes vehicles to diesel fuel or jet fuel (JP-8) with elevated levels of sulfur. Modern engines typically use cooled Exhaust Gas Recirculation (EGR) to meet emissions regulations. Using high-sulfur fuels and cooled EGR elevates problems associated with cooler fouling and corrosion of engine components. Hence, an experimental study has been carried out in a heavy-duty diesel engine running on standard JP-8 fuel and fuel doped with 2870 ppm of sulfur. Gas was sampled from the EGR cooler and analyzed using a condensate collection device developed according to a modified ASTM 3226-73T standard. Engine-out emissions were analyzed in parallel.
Journal Article

Characterizing the Development of Thermal Stratification in an HCCI Engine Using Planar-Imaging Thermometry

2009-04-20
2009-01-0650
A planar temperature imaging diagnostic has been developed and applied to an investigation of naturally occurring thermal stratification in an HCCI engine. Natural thermal stratification is critical for high-load HCCI operation because it slows the combustion heat release; however, little is known about its development or distribution. A tracer-based single-line PLIF imaging technique was selected for its good precision and simplicity. Temperature-map images were derived from the PLIF images, based on the temperature sensitivity of the fluorescence signal of the toluene tracer added to the fuel. A well premixed intake charge assured that variations in fuel/air mixture did not affect the signal. Measurements were made in a single-cylinder optically accessible HCCI research engine (displacement = 0.98 liters) at a typical 1200 rpm operating condition. Since natural thermal stratification develops prior to autoignition, all measurements were made for motored operation.
Journal Article

PLIF Measurements of Thermal Stratification in an HCCI Engine under Fired Operation

2011-04-12
2011-01-1291
Tracer-based PLIF temperature diagnostics have been used to study the distribution and evolution of naturally occurring thermal stratification (TS) in an HCCI engine under fired and motored operation. PLIF measurements, performed with two excitation wavelengths (277, 308 nm) and 3-pentanone as a tracer, allowed investigation of TS development under relevant fired conditions. Two-line PLIF measurements of temperature and composition were first performed to track the mixing of the fresh charge and hot residuals during intake and early compression strokes. Results showed that mixing occurs rapidly with no measureable mixture stratification remaining by early compression (220°CA aTDC), confirming that the residual mixing is not a leading cause of thermal stratification for low-residual (4-6%) engines with conventional valve timing.
Journal Article

Partial Fuel Stratification to Control HCCI Heat Release Rates: Fuel Composition and Other Factors Affecting Pre-Ignition Reactions of Two-Stage Ignition Fuels

2011-04-12
2011-01-1359
Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock. This study focuses on three factors, engine speed, intake temperature, and fuel composition, that can affect the pre-ignition processes of two-stage fuels and consequently affect their performance with partial fuel stratification. A model fuel consisting of 73 vol.% isooctane and 27 vol.% of n-heptane (PRF73), which was previously compared against neat isooctane to demonstrate the superior performance of two-stage fuels over single-stage fuels with partial fuel stratification, was first used to study the effects of engine speed and intake temperature.
Journal Article

Detailed Kinetic Modeling of HCCI Combustion with Isopentanol

2011-09-11
2011-24-0023
Isopentanol is an advanced biofuel that can be produced by micro-organisms through genetically engineered metabolic pathways. Compared to the more frequently studied ethanol, isopentanol's molecular structure has a longer carbon chain and includes a methyl branch. Its volumetric energy density is over 30% higher than ethanol, and it is less hygroscopic. Some fundamental combustion properties of isopentanol in an HCCI engine have been characterized in a recent study by Yang and Dec (SAE 2010-01-2164). They found that for typical HCCI operating conditions, isopentanol lacks two-stage ignition properties, yet it has a higher HCCI reactivity than gasoline. The amount of intermediate temperature heat release (ITHR) is an important fuel property, and having sufficient ITHR is critical for HCCI operation without knock at high loads using intake-pressure boosting. Isopentanol shows considerable ITHR, and the amount of ITHR increases with boost, similar to gasoline.
Journal Article

Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline

2011-04-12
2011-01-0897
This study investigates the potential of partial fuel stratification for reducing the knocking propensity of intake-boosted HCCI engines operating on conventional gasoline. Although intake boosting can substantially increase the high-load capability of HCCI, these engines would be more production-viable if the knock/stability load limit could be extended to allow higher loads at a given boost and/or to provide even higher thermal efficiencies. A technique termed partial fuel stratification (PFS) has recently been shown to greatly reduce the combustion-induced pressure-rise rate (PRR), and therefore the knocking propensity of naturally aspirated HCCI, when the engine is fueled with a φ-sensitive, two-stage-ignition fuel. The current work explores the potential of applying PFS to boosted HCCI operation using conventional gasoline, which does not typically show two-stage ignition. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) at 1200 rpm.
X