Refine Your Search

Search Results

Journal Article

Characteristics of Isopentanol as a Fuel for HCCI Engines

2010-10-25
2010-01-2164
Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C 4 -C 5 alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C 5 alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity.
Journal Article

Boosted HCCI for High Power without Engine Knock and with Ultra-Low NOx Emissions - using Conventional Gasoline

2010-04-12
2010-01-1086
The potential of boosted HCCI for achieving high loads has been investigated for intake pressures (Piⁿ) from 100 kPa (naturally aspirated) to 325 kPa absolute. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) equipped with a compression-ratio 14 piston at 1200 rpm. The intake charge was fully premixed well upstream of the intake, and the fuel was a research-grade (R+M)/2 = 87-octane gasoline with a composition typical of commercial gasolines. Beginning with Piⁿ = 100 kPa, the intake pressure was systematically increased in steps of 20 - 40 kPa, and for each Piⁿ, the fueling was incrementally increased up to the knock/stability limit, beyond which slight changes in combustion conditions can lead to strong knocking or misfire. A combination of reduced intake temperature and cooled EGR was used to compensate for the pressure-induced enhancement of autoignition and to provide sufficient combustion-phasing retard to control knock.
Journal Article

Influence of Fuel Autoignition Reactivity on the High-Load Limits of HCCI Engines

2008-04-14
2008-01-0054
This work explores the high-load limits of HCCI for naturally aspirated operation. This is done for three fuels with various autoignition reactivity: iso-octane, PRF80, and PRF60. The experiments were conducted in a single-cylinder HCCI research engine (0.98 liter displacement), mostly with a CR = 14 piston installed, but with some tests at CR = 18. Five load-limiting factors were identified: 1) NOx-induced combustion-phasing run-away, 2) wall-heating-induced run-away, 3) EGR-induced oxygen deprivation, 4) wandering unsteady combustion, and 5) excessive exhaust NOx. These experiments at 1200 rpm show that the actual load-limiting factor is dependent on the autoignition reactivity of the fuel, the selected CA50, and in some cases, the tolerable level of NOx emissions. For iso-octane, which has the highest resistance to autoignition of the fuels tested, the NOx emissions become unacceptable at IMEPg = 473 kPa.
Journal Article

Boosted HCCI - Controlling Pressure-Rise Rates for Performance Improvements using Partial Fuel Stratification with Conventional Gasoline

2011-04-12
2011-01-0897
This study investigates the potential of partial fuel stratification for reducing the knocking propensity of intake-boosted HCCI engines operating on conventional gasoline. Although intake boosting can substantially increase the high-load capability of HCCI, these engines would be more production-viable if the knock/stability load limit could be extended to allow higher loads at a given boost and/or to provide even higher thermal efficiencies. A technique termed partial fuel stratification (PFS) has recently been shown to greatly reduce the combustion-induced pressure-rise rate (PRR), and therefore the knocking propensity of naturally aspirated HCCI, when the engine is fueled with a φ-sensitive, two-stage-ignition fuel. The current work explores the potential of applying PFS to boosted HCCI operation using conventional gasoline, which does not typically show two-stage ignition. Experiments were conducted in a single-cylinder HCCI research engine (0.98 liters) at 1200 rpm.
Journal Article

Investigating the Development of Thermal Stratification from the Near-Wall Regions to the Bulk-Gas in an HCCI Engine with Planar Imaging Thermometry

2012-04-16
2012-01-1111
A tracer-based single-line PLIF imaging technique using a unique optical configuration that allows simultaneously viewing the bulk-gas and the boundary layer region has been applied to an investigation of the naturally occurring thermal stratification in a HCCI engine. Thermal stratification is critical for HCCI engines, because it determines the maximum pressure rise rate which is a limiting factor for high-load operation. The investigation is based on the analysis of temperature maps that were derived from PLIF images, using the temperature sensitivity of fluorescence from toluene introduced as tracer in the fuel. Measurements were made in a single-cylinder optically accessible HCCI engine operating under motored conditions with a vertical laser-sheet orientation that allows observation of the development of thermal stratification from the cold boundary layers into the central region of the charge.
Technical Paper

Soot Distribution in a D.I. Diesel Engine Using 2-D Laser-Induced Incandescence Imaging

1991-02-01
910224
Laser-induced incandescence (LII) has been explored as a diagnostic for qualitative two-dimensional imaging of the in-cylinder soot distribution in a diesel engine. Advantages of LII over elastic-scatter soot imaging techniques include no interfering signals from liquid fuel droplets, easy rejection of laser light scattered by in-cylinder surfaces, and the signal intensity being proportional to the soot volume fraction. LII images were obtained in a 2.3-liter, single cylinder, direct-injection diesel engine, modified for optical access. To minimize laser sheet and signal attenuation (which can affect almost any planar imaging technique applied to diesel engine combustion), a low-sooting fuel was used whose vaporization and combustion characteristics are typical of standard diesel fuels. Temporal and spatial sequences of LII images were made which show the extent of the soot distribution within the optically accessible portion the combusting spray plume.
Journal Article

Smoothing HCCI Heat Release with Vaporization-Cooling-Induced Thermal Stratification using Ethanol

2011-08-30
2011-01-1760
Ethanol and ethanol/gasoline blends are being widely considered as alternative fuels for light-duty automotive applications. At the same time, HCCI combustion has the potential to provide high efficiency and ultra-low exhaust emissions. However, the application of HCCI is typically limited to low and moderate loads because of unacceptably high heat-release rates (HRR) at higher fueling rates. This work investigates the potential of lowering the HCCI HRR at high loads by using partial fuel stratification to increase the in-cylinder thermal stratification. This strategy is based on ethanol's high heat of vaporization combined with its true single-stage ignition characteristics. Using partial fuel stratification, the strong fuel-vaporization cooling produces thermal stratification due to variations in the amount of fuel vaporization in different parts of the combustion chamber.
Technical Paper

Fuel Stratification for Low-Load HCCI Combustion: Performance & Fuel-PLIF Measurements

2007-10-29
2007-01-4130
Fuel stratification has been investigated as a means of improving the low-load combustion efficiency in an HCCI engine. Several stratification techniques were examined: different GDI injectors, increased swirl, and changes in injection pressure, to determine which parameters are effective for improving the combustion efficiency while maintaining NOx emissions below U.S. 2010 limits. Performance and emission measurements were obtained in an all-metal engine. Corresponding fuel distribution measurements were made with fuel PLIF imaging in a matching optically accessible engine. The fuel used was iso-octane, which is a good surrogate for gasoline. For an idle fueling rate (ϕ = 0.12), combustion efficiency was improved substantially, from 64% to 89% at the NOx limit, using delayed fuel injection with a hollow-cone injector at an injection pressure of 120 bar.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Full Cycle CFD Simulations to Study Thermal and Chemical Effects of Fuel Injection during Negative Valve Overlap in an Automotive Research Engine

2010-10-25
2010-01-2236
Recently experiments were conducted on an automotive homogeneous-charge-compression-ignition (HCCI) research engine with a negative-valve-overlap (NVO) cam. In the study two sets of experiments were run. One set injected a small quantity of fuel (HPLC-grade iso-octane) during NVO in varying amounts and timings followed by a larger injection during the intake stroke. The other set of experiments was similar, but did not include an NVO injection. By comparing both sets of results researchers were able to investigate the use of NVO fuel injection to control main combustion phasing under light-load conditions. For this paper a subset of these experiments are modeled with the computational-fluid-dynamics (CFD) code KIVA3V [ 6 ] using a multi-zone combustion model. The computational domain includes the combustion chamber, and intake and exhaust valves, ports, and runners. Multiple cycles are run to minimize the influence of initial conditions on final simulated results.
Technical Paper

Extinction Measurements of In-Cylinder Soot Deposition in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1296
The combustion process in diesel engines deposits soot on the in-cylinder surfaces. Previous works have suggested that these soot deposits eventually break off during cylinder blow-down and the exhaust stroke and contribute significantly to exhaust soot emissions. In order to better understand this potential pathway to soot emissions, the authors recently investigated combusting fuel-jet/wall interactions in a diesel engine. This work, published as a companion paper, showed how soot escaped from the combusting fuel jet and was brought in close proximity to the wall so that it could become a deposit. The current study extends this earlier work with laser-extinction measurements of the soot-deposition rate in the same single-cylinder, heavy-duty DI diesel engine. Measurements were made by passing the beam of a CW-diode laser through a window in the piston bowl rim that was in-line with one of the fuel jets.
Technical Paper

Diffusion-Flame / Wall Interactions in a Heavy-Duty DI Diesel Engine

2001-03-05
2001-01-1295
Over the past decade, laser diagnostics have improved our understanding of many aspects of diesel combustion. However, interactions between the combusting fuel jet and the piston-bowl wall are not well understood. In heavy-duty diesel engines, with typical fuels, these interactions occur with the combusting vapor-phase region of the jet, which consists of a central region containing soot and other products of rich-premixed combustion, surrounded by a diffusion flame. Since previous work has shown that the OH radical is a good marker of the diffusion flame, planar laser-induced fluorescence (PLIF) imaging of OH was applied to an investigation of the diffusion flame during wall interaction. In addition, simultaneous OH PLIF and planar laser-induced incandescence (PLII) soot imaging was applied to investigate the likelihood for soot deposition on the bowl wall.
Technical Paper

A Computational Study of the Effects of Low Fuel Loading and EGR on Heat Release Rates and Combustion Limits in HCCI Engines

2002-03-04
2002-01-1309
Two fundamental aspects of HCCI engine combustion have been investigated using a single-zone model with time-varying compression and the full chemical-kinetic mechanisms for iso-octane, a representative liquid-phase fuel. This approach allows effects of the kinetics and thermodynamics to be isolated and evaluated in a well-characterized manner, providing an understanding of the selected fundamental processes. The computations were made using the CHEMKIN-III kinetic-rate code for an 1800 rpm operating condition. The study consists of two parts. First, low-load HCCI operation was investigated to determine the role of bulk-gas reactions as a source for HC and CO emissions. The computations show that as fueling is reduced to equivalence ratios of 0.15 and lower (very light load and idle), the bulk-gas reactions do not go to completion, leading to inefficient combustion and high emissions of HC and CO.
Technical Paper

Effects of Fuel Parameters and Diffusion Flame Lift-Off on Soot Formation in a Heavy-Duty DI Diesel Engine

2002-03-04
2002-01-0889
To better understand the factors affecting soot formation in diesel engines, in-cylinder soot and diffusion flame lift-off were measured in a heavy-duty, direct-injection diesel engine. Measurements were obtained at two operating conditions using two commercial diesel fuels and a range of oxygenated paraffinic fuel blends. A line-of-sight laser extinction diagnostic was improved and employed to measure the relative soot concentration within the jet (“jet-soot”) and the rates of soot-wall deposition on the piston bowl-rim. An OH chemiluminescence imaging technique was developed to determine the location of the diffusion flame and to measure the lift-off lengths of the diffusion flame to estimate the amount of oxygen entrainment in the diesel jets. Both the jet-soot and the rate of soot-wall deposition were found to decrease with increasing fuel oxygen-to-carbon ratio (O/C) over a wide range of O/C.
Technical Paper

An Investigation of Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging

2006-04-03
2006-01-1518
Chemiluminescence imaging has been applied to investigate the naturally occurring charge stratification in an HCCI engine. This stratification slows the pressure-rise rate (PRR) during combustion, making it critical to the high-load operating limit of these engines. Experiments were conducted in a single-cylinder HCCI engine modified with windows in the combustion chamber for optical access. Using this engine, chemiluminescence images were obtained from three different view angles. These included both single-shot images with intensified CCD cameras and high-speed (20kHz) sequences with an intensified CMOS video camera. The engine was fueled with iso-octane, which has been shown to be a reasonable surrogate for gasoline and exhibits only single-stage ignition at these naturally aspirated conditions. The chemiluminescence images show that the HCCI combustion is not homogeneous but has a strong turbulent structure even when the fuel and air are fully premixed prior to intake.
Technical Paper

A Comparison of the Effect of Combustion Chamber Surface Area and In-Cylinder Turbulence on the Evolution of Gas Temperature Distribution from IVC to SOC: A Numerical and Fundamental Study

2006-04-03
2006-01-0869
It has previously been shown experimentally and computationally that the process of Homogeneous Charge Compression Ignition (HCCI) is very dependent on the pre-combustion gas temperature field. This study looks in detail at how temperature fields can evolve by comparing results of two combustion chamber designs, a piston with a square bowl and a disk shaped piston, and relates these temperature fields to measured HCCI combustion durations. The contributions of combustion chamber surface area and turbulence levels to the gas temperature evolution are considered over the crank angle range from intake valve closure to top-dead-center. This is a CFD study, whose results were transformed into traditional analysis methods of convective heat transfer (q=h*A*ΔT) and boundary layers.
Technical Paper

Diesel Engine Combustion Modeling Using the Coherent Flame Model in Kiva-II

1993-03-01
930074
A flamelet model is used to calculate combustion in a diesel engine, and the results are compared to experimental data available from an optically accessible, direct-injection diesel research engine. The 3∼D time-dependent Kiva-II code is used for the calculations, the standard Arrhenius combustion model being replaced by an ignition model and the coherent flame model for turbulent combustion. The ignition model is a four-step mechanism developed for heavy hydrocarbons which has been previously used for diesel combustion. The turbulent combustion model is a flamelet model developed from the basic ideas of Marble and Broadwell. This model considers local regions of the turbulent flame front as interfaces called flamelets which separate fuel and oxidizer in the case of a diffusion flame. These flamelets are accounted for by solving a transport equation for the flame surface density, i.e., the flame area per unit volume.
Technical Paper

Diesel Engine Combustion Studies in a Newly Designed Optical-Access Engine Using High-Speed Visualization and 2-D Laser Imaging

1993-03-01
930971
Two-dimensional laser-sheet imaging and high-speed cinematography have been used to examine the combustion process in a newly constructed, optically accessible, direct-injection Diesel engine of the “heavy-duty” size class. The design of this engine preserves the intake port geometry and basic dimensions of a Cummins N-series production engine. It also includes several unique features to provide considerable optical access. An extended piston with piston-crown window and a window in the cylinder head allow the processes in the combustion bowl and squish region to be observed simultaneously. Windows at the top of the cylinder wall provide orthogonal-optical access with the capability of allowing the laser sheet to enter the cylinder along the axis of the spray. Finally, this new engine incorporates a unique separating cylinder liner that permits rapid cleaning of the windows. Studies were performed at a medium speed (1200 rpm) using a Cummins closed-nozzle fuel injector.
Technical Paper

Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model

2004-06-08
2004-01-1910
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio ϕ = 0.26 to very low loads (ϕ = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

2005-05-11
2005-01-2134
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
X