Refine Your Search

Search Results

Technical Paper

An Investigation of Different Ported Fuel Injection Strategies and Thermal Stratification in HCCI Engines Using Chemiluminescence Imaging

2010-04-12
2010-01-0163
The purpose of this study was to gain a better understanding of the effects of port fuel injection strategies and thermal stratification on the HCCI combustion processes. Experiments were conducted in a single-cylinder HCCI engine modified with windows in the combustion chamber for optical access. Two-dimensional images of the chemiluminescence were captured using an intensified CCD camera in order to understand the spatial distribution of the combustion. N-heptane was used as the test fuel. The experimental data consisting of the in-cylinder pressure, heat release rate, chemiluminescence images all indicate that the different port fuel injection strategies result in different charge distributions in the combustion chamber, and thus affect the auto-ignition timing, chemiluminescence intensity, and combustion processes. Under higher intake temperature conditions, the injection strategies have less effect on the combustion processes due to improved mixing.
Technical Paper

Evaluation of Knock Intensity and Knock-Limited Thermal Efficiency of Different Combustion Chambers in Stoichiometric Operation LNG Engine

2019-04-02
2019-01-1137
Liquefied natural gas (LNG) engine could provide both reduced operating cost and reduction of greenhouse gas (GHG) emissions. Stoichiometric operation with EGR and the three-way catalyst has become a potential approach for commercial LNG engines to meet the Euro VI emissions legislation. In the current study, numerical investigations on the knocking tendency of several combustion chambers with different geometries and corresponding performances were conducted using CONVERGE CFD code with G-equation flame propagation model coupled with a reduced natural gas chemical kinetic mechanism. The results showed that the CFD modeling approach could predict the knock phenomenon in LNG engines reasonably well under different thermodynamic and flow field conditions.
Technical Paper

Investigation of the Effects of Injection Timing on Thermo-Atmosphere Combustion of Methanol

2007-04-16
2007-01-0197
The effects of various injection timing of methanol on thermo-atmosphere combustion of methanol by port injection of dimethyl ether (DME) and direct injection of methanol were experimentally investigated. The experiment results show that, as injection timing is at 6 degree before TDC, the combustion process comprises three stages: low temperature heat release of DME, high temperature heat release of DME and diffusion combustion of methanol. As injection timing increases, premixed combustion proportion of methanol is increased and diffusion combustion proportion is decreased. As injection timing increases to 126 degree before TDC, diffusion combustion of methanol disappears. At this time, the combustion process shows typical two stages heat release of HCCI combustion. As injection timing increases, required DME rate is increased, combustion efficiency and indicated thermal efficiency all first increase and then decrease.
Technical Paper

An Investigation on the Effects of Fuel Chemistry and Engine Operating Conditions on HCCI Engine

2008-06-23
2008-01-1660
A HCCI engine has been run at different operating boundaries conditions with fuels of different RON and MON and different chemistries. The fuels include gasoline, PRF and the mixture of PRF and ethanol. Six operating boundaries conditions are considered, including different intake temperature (Tin), intake pressure (Pin) and engine speed. The experimental results show that, fuel chemistries have different effect on the combustion process at different operating conditions. It is found that CA50 (crank angle at 50% completion of heat release) shows no correlation with either RON or MON at some operating boundaries conditions, but correlates well with the Octane Index (OI) at all conditions. The higher the OI, the more the resistance to auto-ignition and the later is the heat release in the HCCI engine. The operating range is also correlation with the OI. The higher the OI, the higher IMEP can reach.
Technical Paper

A Numerical Investigation on Effects of Charge Stratification on HCCI Combustion

2007-10-29
2007-01-4132
A fully coupled multi-dimensional CFD and reduced chemical kinetics model is adopted to investigate the effects of charge stratification on HCCI combustion and emissions. Seven different kinds of imposed stratification have been introduced according to the position of the maximal local fuel/air equivalence ratio in the cylinder at intake valve close. The results show that: The charge stratification results in stratification of the in-cylinder temperature. The former four kinds of stratification, whose maximal local equivalence ratios at intake valve close locate between the cylinder center and half of the cylinder radius, advance ignition timing, reduce the pressure-rise rate, and retard combustion-phasing. But the following three kinds of stratification, whose maximal local equivalence ratios at intake valve close appear between half of the cylinder radius and the cylinder wall, have little effect on the cylinder pressure.
Technical Paper

The Influence of Boost Pressure and Fuel Chemistry on Combustion and Performance of a HCCI Engine

2008-04-14
2008-01-0051
The influence of boost pressure (Pin) and fuel chemistry on combustion characteristics and performance of homogeneous charge compression ignition (HCCI) engine was experimentally investigated. The tests were carried out in a modified four-cylinder direct injection diesel engine. Four fuels were used during the experiments: 90-octane, 93-octane and 97-octane primary reference fuel (PRF) blend and a commercial gasoline. The boost pressure conditions were set to give 0.1, 0.15 and 0.2MPa of absolute pressure. The results indicate that, with the increase of boost pressure, the start of combustion (SOC) advances, and the cylinder pressure increases. The effects of PRF octane number on SOC are weakened as the boost pressure increased. But the difference of SOC between gasoline and PRF is enlarged with the increase of boost pressure. The successful HCCI operating range is extended to the upper and lower load as the boost pressure increased.
Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
Technical Paper

Effect of EGR on HCCI Combustion fuelled with Dimethyl Ether (DME) and Methanol Dual-Fuels

2005-10-24
2005-01-3730
The effects of cooled EGR on combustion and emission characteristics in HCCI operation region was investigated on a single-cylinder diesel engine, which is fitted with port injection of DME and methanol. The results indicate that EGR rate can enlarge controlled HCCI operating region, but it has little effect on the maximum load of HCCI engine fuelled with DME/methanol dual-fuels. With the increase of EGR rate, the main combustion ignition timing (MCIT) delays, the main combustion duration (MCD) prolongs, and the peak cylinder pressure and the peak rate of heat release decreases. Compared with EGR, DME percentage has an opposite effect on HCCI combustion characteristics. The increase of indicated thermal efficiency is a combined effect of EGR rate and DME percentage. Both HC and CO emissions ascend with EGR rate increasing, and decrease with DME percentage increasing. In normal combustion, NOX emissions are near zero.
Technical Paper

The Effect of PRF Fuel Octane Number on HCCI Operation

2004-10-25
2004-01-2992
By mixing iso-octane with octane number 100 and normal heptane with octane number 0, it was possible to obtain a PRF fuel with octane rating between 0 and 100. The influence of PRF fuel’s octane number on the combustion characteristics, performance and emissions character of homogeneous charge compression ignition (HCCI) engine was investigated. The experiments were carried out in a single cylinder direct injection diesel engine. The test results show that, with the increase of the octane number, the ignition timing delayed, the combustion rate decreased, and the cylinder pressure decreased. The HCCI combustion can be controlled and then extending the HCCI operating range by burning different octane number fuel at different engine mode, which engine burns low octane number fuel at low load mode and large octane number fuel at large load mode. There exists an optimum octane number that achieves the highest indicated thermal efficiency at different engine load.
Technical Paper

Experimental Study on HCCI Combustion of Dimethyl Ether(DME)/Methanol Dual Fuel

2004-10-25
2004-01-2993
Homogeneous charge compression ignition (HCCI) is considered as a high efficient and clean combustion technology for I.C. engines. Methanol is a potential fuel for HCCI combustion. In this research, a single cylinder diesel engine was applied to HCCI operation. Methanol and dimethyl ether (DME) were fueled to the engine by fuel injection system with an electric controlled port in dual fuel mode. The results show that the stable HCCI operation of DME/methanol can be obtained over a quite broad speed and load region. And compared with higher speeds, the load region is even wider at low engine speed. E.g., at the engine speed of 1000 r/min, the maximum indicated mean effective pressure(IMEP) can reach 0.77 MPa, while at 2000r/min it is 0.53 MPa. Both DME and methanol influence HCCI combustion strongly, and by regulating DME/methanol proportions the HCCI combustion process could be controlled effectively.
Technical Paper

Turbocharged diesel/CNG Dual-fuel Engines with Intercooler: Combustion, Emissions and Performance

2003-10-27
2003-01-3082
A yc6112ZLQ turbocharged 6 cylinder engine with intercooler was converted to operate in dual fuel mode with compressed natural gas (CNG) and pilot diesel. The influence of the CNG ratio, pilot diesel injection advance (ADC) and intake temperature after intercooler on the combustion process, emissions and engine performance was investigated. The results show that the combustion process of dual-fuel engines is faster than diesel engine. Both the ignition timing of the pilot fuel and the excess air ratio of total fuel λ dominate the combustion characteristics of duel-fuel engines. With the increase of CNG ratio, the pressure and temperature in cylinder decrease at rated mode, but increase at torque and low speed modes. With advanced the pilot injection timing or increased the intake temperature, the cylinder pressure and temperature increase.
Technical Paper

Experimental Study on the Effects of EGR and Octane Number of PRF Fuel on Combustion and Emission Characteristics of HCCI Engines

2005-04-11
2005-01-0174
The effects of Exhaust Gas Recirculation (EGR) and octane number of PRF fuel on combustion and emission characteristics in HCCI operation were investigated. The results show that EGR could delay the ignition timing, slow down the combustion reaction rate, reduce the pressure and average temperature in cylinder and extend the operation region into large load mode. With the increase of the fuel/air equivalence ratio or the fuel octane number (ON), the effect of EGR on combustion efficiency improves. With the increase of EGR rate, the combustion efficiency decreases. The optimum indicated thermal efficiency of different octane number fuels appears in the region of high EGR rate and large fuel/air equivalence ratio, which is next to the boundary of knocking. In the region of high EGR rate, HC emissions rise up sharply as the EGR rate increases. With the increase of octane number, this tendency becomes more obvious.
Technical Paper

Effects of Fuel Physical and Chemical Properties on Combustion and Emissions on Both Metal and Optical Diesel Engines and on a Partially Premixed Burner

2015-09-01
2015-01-1918
Effects of fuel physical and chemical properties on combustion and emissions were investigated on both metal and optical diesel engines. The new generation oxygenated biofuels, n-butanol and DMF (2,5-dimethylfuran) were blended into diesel fuel with 20% volume fraction and termed as Butanol20 and DMF20 respectively. The exhaust gas recirculation (EGR) rates were varied from zero to ∼60% covering both conventional and low temperature combustion. Meanwhile, the reference fuels such as n-heptane, cetane, and iso-cetane were also used to isolate the effects of different fuel properties on combustion and emissions. In addition, to clarify the effects of oxygenated structures on combustion and emissions, a fundamental partially premixed burner was also used. Results based on metal and optical diesel engines show that fuel cetane number is the dominated factor to affect the auto-ignition timing and subsequent combustion process.
Technical Paper

A Comparative Study on the Fuel Economy Improvement of a Natural Gas SI Engine at the Lean Burn and the Stoichiometric Operation both with EGR under the Premise of Meeting EU6 Emission Legislation

2015-09-01
2015-01-1958
In order to further study the effects of air and EGR dilution on the fuel economy improvement of natural gas engines under the premise of meeting EU6 legislation, a comparison between stoichiometric operation with EGR and lean burn operation with and without EGR has been conducted at 1600rpm 50% and 75% load. The conversion efficiencies of the catalysts for both NOx and CH4 emissions are assumed at 90% for lean burn operation. Experiment results indicate that under the condition of meeting both NOx and CH4 predetermined engine-out emissions limits for EU6 legislation, lean operation with a small fraction of EGR dilution enables more advanced combustion phasing compared to pure lean operation, which results in much better fuel economy, thus further improvement compared to stoichiometric operation is achieved.
Technical Paper

A Comparative Study on Different Dual-Fuel Combustion Modes Fuelled with Gasoline and Diesel

2012-04-16
2012-01-0694
Comparisons have been made between dual-fuel (80% port-injection gasoline and 20% direct-injection diesel by mass) Highly Premixed Charge Combustion (HPCC) and blended-fuel (80% gasoline and 20% diesel) Low Temperature Combustion (LTC) modes on a 1-L single-cylinder test engine. In the HPCC mode, both early-injection (E-HPCC) and late-injection (L-HPCC) of diesel have been used. The comparisons have been conducted with a fixed fuel injection rate of 50 mg/cycle at 1500 rpm, and with the combustion phasing fixed (by adjusting the injection timing) so that the 50% heat release point (CA50) is at 8° ATDC. The rapid heat release process of LTC leads to the highest maximum pressure rise rate (MPRR). A two-peak heat release process is observed in L-HPCC, resulting in a lower MPRR. The heat release rate and MPRR values for the E-HPCC are comparable to the L-HPCC values. The EHPCC mode provides the lowest NOX emission. The soot emissions for all three modes are low.
Technical Paper

Comparison of Diesel Combustion CFD Models and Evaluation of the Effects of Model Constants

2012-04-16
2012-01-0134
This paper describes numerical simulations that compare the performance of two combustion CFD models against experimental data, and evaluates the effects of combustion and spray model constants on the predicted combustion and emissions under various operating conditions. The combustion models include a Characteristic Time Combustion (CTC) model and CHEMKIN with reduced chemistry models integrated in the KIVA-3Vr2 CFD code. The diesel spray process was modeled using an updated version of the KH-RT spray model that features a gas jet submodel to help reduce numerical grid dependencies, and the effects of both the spray and combustion model constants on combustion and emissions were evaluated. In addition, the performance of two soot models was compared, namely a two-step soot model, and a more detailed model that considers soot formation from PAH precursors.
Technical Paper

Effects of Different Turbocharging Systems on Performance in a HD Diesel Engine with Different Emission Control Technical Routes

2016-10-17
2016-01-2185
In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
Technical Paper

A Numerical Study on Combustion and Emission Characteristics of Marine Engine through Miller Cycle Coupled with EGR and Water Emulsified Fuel

2016-10-17
2016-01-2187
The combustion in low-speed two-stroke marine diesel engines can be characterized as large spatial and temporal scales combustion. One of the most effective measures to reduce NOx emissions is to reduce the local maximum combustion temperature. In the current study, multi-dimensional numerical simulations have been conducted to explore the potential of Miller cycle, high compression ratio coupled with EGR (Exhaust Gas Recirculation) and WEF (water emulsified fuel) to improve the trade-off relationship of NOx-ISFC (indicated specific fuel consumption) in a low-speed two-stroke marine engine. The results show that the EGR ratio could be reduced combined with WEF to meet the Tier III emission regulation. The penalty on fuel consumption with EGR and WEF could be offset by Miller cycle and high geometric compression ratio.
Technical Paper

Numerical Study of the RCCI Combustion Processes Fuelled with Methanol, Ethanol, n-Butanol and Diesel

2016-04-05
2016-01-0777
In the current, numerical study RCCI combustion and emission characteristics using various fuel strategies are investigated, including methanol, ethanol, n-butanol and gasoline as the low reactivity fuel, and diesel fuel as the high reactivity fuel. A reduced Primary Reference Fuel (PRF)-alcohol chemical kinetic mechanism was coupled with a computational fluid dynamic (CFD) code to predict RCCI combustion under various operating conditions. The results show that a higher quantity of diesel was required to maintain the same combustion phasing with alcohol-diesel fuel blends, and the combustion durations and pressure rise rates of methanol-diesel (MD) and ethanol-diesel (ED) cases were much shorter and higher than those of gasoline-diesel (GD) and n-butanol-diesel (nBD) cases. The simulations also investigated the sensitivities of the direct injection strategies, intake temperature and premixed fuel ratio on RCCI combustion phasing control.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
X