Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Vehicle electric power simulator for optimizing the electric charging system

2000-06-12
2000-05-0054
The electrical power system is the vital lifeline to most of the control systems on modern vehicles. The demands on the system are highly complex, and a detailed understanding of the system behavior is necessary both to the process of systems integration and to the economic design of a specific control system or actuator. The vehicle electric power system, which consists of two major components: a generator and a battery, has to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study.
Technical Paper

Distributed System Architecture of Autonomous Vehicles and Real-Time Path Planning Based on the Curvilinear Coordinate System

2012-04-16
2012-01-0740
The development of autonomous vehicle requires the state-of-the-art technologies in perception, planning, control, and system integration. This paper presents an overview of the system architecture and software architecture of autonomous vehicles for system integration. Network based system architecture in this paper provides a distributed computing system for autonomous driving. Further, a real-time path planning and a target speed generation are described based on the curvilinear coordinate system. The design of a path in the curvilinear coordinate system stretches the design space as like the Cartesian coordinate system to simplify the generation of the path. In determination of target speed, curvatures and risk of a generated path were utilized for safe autonomous driving.
Technical Paper

Design and Development of a Computer-Aided In-Vehicle Data Acquisition System for Driving Pattern Analysis

1999-03-01
1999-01-0954
In order to evaluate vehicle powertrain performances and driver behaviors, a computer aided in-vehicle data acquisition system named MOde Survey System (MOSS) is newly developed in conjunction with a motor manufacturer. MOSS is designed to be used by personnel related to vehicle emissions and energy with the aim of being cost-effective and easy-to-use. Since driving behaviors and patterns influence powertrain performance in terms of fuel economy and emissions, engineers can utilize the system for understanding the driving pattern and traffic situation quantitatively. MOSS mainly consists of an MCU-based hardware and PC-based software. MOSS logs and analyzes various data related to vehicle driving. Compared to currently-existing Test and Measurement Systems, MOSS is designed and developed for a specific goal with several unique features.
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
Technical Paper

Modeling and Simulation of Vehicle Electric Power System

2001-10-01
2001-01-3343
Since many electric and electronic systems are continuously added in a vehicle to meet various regulations and customer demands over the last decade, the demand on the electric power have been substantially increased. Furthermore the idle time fraction during the vehicle traveling has been increased due to the heavy urban traffic condition. The electric power system of the modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. A detailed understanding of the characteristics of the electric power system, electrical load demands, and driving environment such as road, season, and vehicle weight are required when the capacities of generator and battery are determined for a vehicle. In order to avoid an over or under design problem of the electric power system, a simulation program for electric power estimation is adequate.
Technical Paper

Feedback Error Learning Neural Networks for Air-to-Fuel Ratio Control in SI Engines

2003-03-03
2003-01-0356
A controller is introduced for air-to-fuel ratio management, and the control scheme is based on the feedback error learning method. The controller consists of neural networks with linear feedback controller. The neural networks are radial basis function network (RBFN) that are trained by using the feedback error learning method, and the air-to-fuel ratio is measured from the wide-band oxygen sensor. Because the RBFNs are trained by online manner, the controller has adaptation capability, accordingly do not require the calibration effort. The performance of the controller is examined through experiments in transient operation with the engine-dynamometer.
X