Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Fuel Consumption and Cost Potential of Different Plug-In Hybrid Vehicle Architectures

2015-04-14
2015-01-1160
Plug-in Hybrid Electric Vehicles (PHEVs) have demonstrated the potential to provide significant reduction in fuel use across a wide range of dynamometer test driving cycles. Companies and research organizations are involved in numerous research activities related to PHEVs. One of the current unknowns is the impact of driving behavior and standard test procedure on the true benefits of PHEVs from a worldwide perspective. To address this issue, five different PHEV powertrain configurations (input split, parallel, series, series-output split and series-parallel), implemented on vehicles with different all-electric ranges (AERs), were analyzed on three different standard cycles (i.e., Urban Dynamometer Driving Schedule, Highway Fuel Economy Test, and New European Driving Cycle). Component sizes, manufacturing cost, and fuel consumption were analyzed for a midsize car in model year 2020 through the use of vehicle system simulations.
Technical Paper

Tahoe HEV Model Development in PSAT

2009-04-20
2009-01-1307
Argonne National Laboratory (Argonne) and Idaho National Laboratory (INL), working with the FreedomCAR and Fuels Partnership, lead activities in vehicle dynamometer and fleet testing as well as in modeling activities. By using Argonne’s Advanced Powertrain Research Facility (APRF), the General Motors (GM) Tahoe 2-mode was instrumented and tested in the 4-wheel-drive test facility. Measurements included both sensors and controller area network (CAN) messages. In this paper, we describe the vehicle instrumentation as well as the test results. On the basis of the analysis performed, we discuss the vehicle model developed in Argonne’s vehicle simulation tool, the Powertrain System Analysis Toolkit (PSAT), and its comparison with test data. Finally, on-road vehicle data, performed by INL, is discussed and compared with the dynamometer results.
Technical Paper

Model-Based Fuel Economy Technology Assessment

2017-03-28
2017-01-0532
Many leading companies in the automotive industry have been putting tremendous amount of efforts into developing new designs and technologies to make their products more energy efficient. It is straightforward to evaluate the fuel economy benefit of an individual technology in specific systems and components. However, when multiple technologies are combined and integrated into a whole vehicle, estimating the impact without building and testing an actual vehicle becomes very complex, because the efficiency gains from individual components do not simply add up. In an early concept phase, a projection of fuel efficiency benefits from new technologies will be extremely useful; but in many cases, the outlook has to rely on engineer’s insight since it is impractical to run tests for all possible technology combinations.
Technical Paper

Control Analysis and Model Validation for BMW i3 Range Extender

2017-03-28
2017-01-1152
The control analysis and model validation of a 2014 BMW i3-Range Extender (REX) was conducted based on the test data in this study. The vehicle testing was performed on a chassis dynamometer set within a thermal chamber at the Advanced Powertrain Research Facility at Argonne National Laboratory. The BMW i3-REX is a series-type plug-in hybrid range extended vehicle which consists of a 0.65L in-line 2-cylinder range-extending engine with a 26.6kW generator, 125kW permanent magnet synchronous AC motor, and 18.8kWh lithium-ion battery. Both component and vehicle model including thermal aspects, were developed based on the test data. For example, the engine fuel consumption rate, battery resistance, or cabin HVAC energy consumption are affected by the temperature. Second, the vehicle-level control strategy was analyzed at normal temperature conditions (22°C ambient temperature). The analysis focuses on the engine on/off strategy, battery SOC balancing, and engine operating conditions.
Technical Paper

Standard Driving Cycles Comparison (IEA) & Impacts on the Ownership Cost

2018-04-03
2018-01-0423
A new type of approval procedure for light-duty vehicles, the Worldwide harmonized Light vehicles Test Procedure (WLTP), developed by an initiative of the United Nations Economic Commission for Europe, will come into force by the end of 2017. The current European type-approval procedure for energy consumption and CO2 emissions of cars, the New European Driving Cycle (NEDC), includes a number of tolerances and flexibilities that no longer accurately reflect state-of-the-art technologies. Indeed, on the basis of an analysis of real-world driving data from the German website spritmonitor.de, the ICCT concluded that the differences between official laboratory and real-world fuel consumption and CO2 values were around 7% in 2001. This discrepancy has been increasing continuously since then to around 30% in 2013, with notable differences found between individual manufacturers and vehicle models.
Technical Paper

Model Validation of the Chevrolet Volt 2016

2018-04-03
2018-01-0420
Validation of a vehicle simulation model of the Chevrolet Volt 2016 was conducted. The Chevrolet Volt 2016 is equipped with the new “Voltec” extended-range propulsion system introduced into the market in 2016. The second generation Volt powertrain system operates in five modes, including two electric vehicle modes and three extended-range modes. Model development and validation were conducted using the test data performed on the chassis dynamometer set in a thermal chamber of Argonne National Laboratory’s Advanced Powertrain Research Facility. First, the components of the vehicle, such as the engine, motor, battery, wheels, and chassis, were modeled, including thermal aspects based on the test data. For example, engine efficiency changes dependent on the coolant temperature, or chassis heating or air-conditioning operations according to the ambient and cabin temperature, were applied.
Technical Paper

Cost Effective Annual Use and Charging Frequency for Four Different Plug-in Powertrains

2013-04-08
2013-01-0494
Vehicles with electrified powertrains, such as hybrid electric vehicles (HEVs), plug-in HEV (PHEVs), and AEVs (all-electric vehicles using grid-supplied battery energy exclusively), are potentially marketable because of low operating costs, but each comes with a significant initial cost penalty in comparison to a conventional vehicle (CV) powered by an internal combustion engine. Accordingly, a high rate of utilization is necessary for cost effectiveness. This paper examines the projected future (2020) cost effectiveness of several alternative powertrains within a standard compact sedan glider: an AEV and a set of selected input-split and output-split HEV and PHEV powertrains with various battery power and energy storage capabilities. Vehicle performance and consumption rates of fuel and electricity were estimated using vehicle simulations, and vehicle prices were estimated using cost models.
Technical Paper

Transmission Shifting Analysis and Model Validation for Medium Duty Vehicles

2023-04-11
2023-01-0196
Over the past couple of years, Argonne National Laboratory has tested, analyzed, and validated automobile models for the light duty vehicle class, including several types of powertrains including conventional, hybrid electric, plug-in hybrid electric and battery electric vehicles. Argonne’s previous works focused on the light duty vehicle models, but no work has been done on medium and heavy-duty vehicles. This study focuses on the validation of shifting control in advanced automatic transmission technologies for medium duty vehicles by using Argonne’s model-based high-fidelity, forward-looking, vehicle simulation tool, Autonomie. Different medium duty vehicles, from Argonne’s own fleet, including the Ram 2500, Ford F-250 and Ford F-350, were tested with the equipment for OBD (on-board diagnostics) signal data record. For the medium duty vehicles, a workflow process was used to import test data.
Technical Paper

Design of a Rule-Based Controller and Parameter Optimization Using a Genetic Algorithm for a Dual-Motor Heavy-Duty Battery Electric Vehicle

2022-03-29
2022-01-0413
This paper describes a configuration and controller, designed using Autonomie,1 for dual-motor battery electric vehicle (BEV) heavy-duty trucks. Based on the literature and current market research, this model was designed with two electric motors, one on the front axle and the other on the rear axle. A rule-based control algorithm was designed for the new dual-motor BEV, based on the model, and the control parameters were optimized by using a genetic algorithm (GA). The model was simulated in diverse driving cycles and gradeability tests. The results show both a good following of the desired cycle and achievement of truck gradeability performance requirements. The simulation results were compared with those of a single-motor BEV and showed reduced energy consumption with the high-efficiency operation of the two motors.
Technical Paper

Validating Heavy-Duty Vehicle Models Using a Platooning Scenario

2019-04-02
2019-01-1248
Connectivity and automation provide the potential to use information about the environment and future driving to minimize energy consumption. Aerodynamic drag can also be reduced by close-gap platooning using information from vehicle-to-vehicle communications. In order to achieve these goals, the designers of control strategies need to simulate a wide range of driving situations in which vehicles interact with other vehicles and the infrastructure in a closed-loop fashion. RoadRunner is a new model-based system engineering platform based on Autonomie software, which can collectively provide the necessary tools to predict energy consumption for various driving decisions and scenarios such as car-following, free-flow, or eco-approach driving, and thereby can help in developing control algorithms.
Technical Paper

Advanced Automatic Transmission Model Validation Using Dynamometer Test Data

2014-04-01
2014-01-1778
As a result of increasingly stringent regulations and higher customer expectations, auto manufacturers have been considering numerous technology options to improve vehicle fuel economy. Transmissions have been shown to be one of the most cost-effective technologies for improving fuel economy. Over the past couple of years, transmissions have significantly evolved and impacted both performance and fuel efficiency. This study validates the shifting control of advanced automatic transmission technologies in vehicle systems by using Argonne National Laboratory's model-based vehicle simulation tool, Autonomie. Different midsize vehicles, including several with automatic transmission (6-speeds, 7-speeds, and 8-speeds), were tested at Argonne's Advanced Powertrain Research Facility (APRF). For the vehicles, a novel process was used to import test data.
Technical Paper

Impact of Advanced Engine and Powertrain Technologies on Engine Operation and Fuel Consumption for Future Vehicles

2015-04-14
2015-01-0978
Near-term advances in spark ignition (SI) engine technology (e.g., variable value lift [VVL], gasoline direct injection [GDI], cylinder deactivation, turbo downsizing) for passenger vehicles hold promise of delivering significant fuel savings for vehicles of the immediate future. Similarly, trends in transmissions indicate higher (8-speed, 9-speed) gear numbers, higher spans, and a focus on downspeeding to improve engine efficiency. Dual-clutch transmissions, which exhibit higher efficiency in lower gears, than the traditional automatics, and are being introduced in the light-duty vehicle segment worldwide. Another development requiring low investment and delivering immediate benefits has been the adaptation of start-stop (micro hybrids or idle engine stop technology) technology in vehicles today.
Technical Paper

Vehicle Lightweighting Impacts on Energy Consumption Reduction Potential Across Advanced Vehicle Powertrains

2024-04-09
2024-01-2266
The National Highway Traffic Safety Administration (NHTSA) plays a crucial role in guiding the formulation of Corporate Average Fuel Economy (CAFE) standards, and at the forefront of this regulatory process stands Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy (DOE) research institution, has developed Autonomie—an advanced and comprehensive full-vehicle simulation tool that has solidified its status as an industry standard for evaluating vehicle performance, energy consumption, and the effectiveness of various technologies. Under the purview of an Inter-Agency Agreement (IAA), the DOE Argonne Site Office (ASO) and Argonne have assumed the responsibility of conducting full-vehicle simulations to support NHTSA's CAFE rulemaking initiatives. This paper introduces an innovative approach that hinges on a large-scale simulation process, encompassing standard regulatory driving cycles tailored to various vehicle classes and spanning diverse timeframes.
X