Refine Your Search

Topic

Search Results

Technical Paper

Comparative Assessment of Performance, Emission and Combustion Characteristics of Blends of Methyl and Ethyl Ester of Jatropha Oil and Diesel in Compression Ignition Engine

2013-10-14
2013-01-2664
India possesses only 0.3% of world petroleum reserves and hence heavily dependent upon petroleum derived fuels to feed its rapidly growing economy. Diesel Engines due to their superior performance have wide application in India, however, they also pollute environment significantly. Research is underway in India and elsewhere to explore the potential of variety of alternative fuels which could substitute diesel in a holistic manner. And in this context, non-edible vegetable oils are very promising as India has a large area of degraded land where such crops could be raised without compromising food security. Large number of studies have suggested that vegetable oils are not suitable in neat form as a fuel in diesel engine and should be trans-esterified using either methanol or ethanol to form esters to bring their properties similar to diesel fuel.
Technical Paper

Comparative Study on Performance and Emission Characteristics of Fish Oil Biodiesel and Mahua Oil Biodiesel Blend with Diesel in a Compression Ignition Engine

2013-10-14
2013-01-2666
The commercial sources of energy such as fossil fuels and petroleum products are extensively used. These sources are finite and cause large scale degradation of environment. The increased pollution in urban areas is already causing serious sociological, ecological and economic implications. Diesel engines produce high torque at low rpm as compared to spark ignition engines due to which they are used in industrial, agricultural and transportation sector. Diesel fuel has higher HC, CO and PM emissions in comparison to biodiesel. This has drawn the attention of world towards the usage of biodiesel as an alternative fuel. Biodiesel has an advantage over diesel fuel because of its biodegradable and less toxic nature and superior lubrication properties. However, NOx emissions are compounded in case of biodiesel in CI engine. There has been concerns that biodiesel feedstock may compete with food supply in the long term.
Technical Paper

Emission Studies on a VCR Engine Using Stable Diesel Water Emulsion

2013-10-14
2013-01-2665
Internal combustion engines are the backbone of contemporary global transportation. But the major drawbacks associated with them, are the exhaust gases. These include carbon monoxide (CO), unburned hydrocarbons (UBHC), oxides of nitrogen (NOx), odor, particulate matter (PM) etc. Among them the emissions of oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For NOx reduction in recent developing technologies, diesel water emulsion was found the best approach for the existing engines by researchers. In the present study, performance and emission statistics of a diesel engine using diesel water emulsion operating at different compression ratios from 17:1 to 18:1 was performed. Stable Emulsions were prepared with 5%, 10%, 15%, 20% and 25 % (v/v) water concentration with variable agitation speed ranging from 5000-15000 rpm along with two surfactants. Various physico-chemical properties of emulsions were tested for all six samples including diesel.
Technical Paper

Scope of Regenerative (Magnetic) Braking in the Production of Electricity in Automobiles

2013-10-14
2013-01-2543
It is of common knowledge that tapping all the feasible sources of energy and systems which prevent losses is the need of the hour. Currently, many such systems have been developed including “REGENERATIVE BRAKING”. The usual method for regenerative braking includes using a dynamo attached to the crankshaft which gets charged when the wheel rotates during idling. However, this study aims at doing this differently by attaching the regenerative system at the wheels. Considering an example of wastage of energy, a 1000 kg car brakes from 36km/h (10m/s) to 18km/h (5m/s) about 150 times in a liter consumption of diesel. We can safely calculate wastage of 5625 KJ of kinetic energy. This paper aims to explore this immense potential source of energy recovery by producing & storing electricity using magnetic braking on wheels of automobiles.
Technical Paper

Potential Utilization of CNG in Stationary HCCI Engine

2013-10-14
2013-01-2508
Internal combustion engines are extensively used in every field of life in today's world. Diesel engines being more efficient are preferred in the industrial and transportation sector in comparison to spark ignition engines for their higher efficiency, versatility and ruggedness. The major emissions of diesel engines are oxides of nitrogen (NOx), particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO). Among these emissions, oxides of nitrogen (NOx) and the particulate matter are the reasons of serious concern. For reduction of oxides of nitrogen (NOx) and particulate matter simultaneously, the use of Homogeneous Charge Compression Ignition (HCCI) have provided a sustainable solution in the present scenario. Further, the use of CNG in HCCI engine along with pilot diesel injection; the emissions have been decreased drastically. Homogeneous mixing of fuel and air leads to cleaner combustion and lower emissions.
Technical Paper

Utilization of Blends of Jatropha Oil and N-Butanol in a Naturally Aspirated Compression Ignition Engine

2013-10-14
2013-01-2684
Diesel Engines are widely used in transportation, industrial and agriculture sectors worldwide due to their versatility and ruggedness. However, they also emit harmful emissions detrimental to human health and environment. Apart from environmental degradation, the perturbation in international crude oil prices is also mandating use of renewable fuels. In this context, vegetable oils such as Jatropha Curcas due to their carbon neutral nature and widespread availability, seems to present a promising alternative to the mineral diesel. Straight vegetable oils (SVO) are not recommended for direct diesel engine application due to their higher viscosity, poor volatility etc. and dilution of straight vegetable oil may effectively enable its direct application in unmodified diesel engines. In the present study, Jatropha oil was diluted with n-Butanol to improve the fuel properties of the blend.
Technical Paper

Performance Analyses of Diesel Engine at Different Injection Angles Using Water Diesel Emulsion

2013-09-17
2013-01-2170
Globally, transportation is the second largest energy consuming sector after the industrial sector and is completely dependent on petroleum products and alternative technologies. So, fossil fuel consumption for energy requirement is a primary concern and can be addressed with the fuel consumption reduction technologies. Transportation sector is mainly using diesel engines because of production of high thermal efficiency and higher torque at lower RPM. Therefore, diesel consumption should be targeted for future energy security and this can be primarily controlled by the petroleum fuel substitution techniques for existing diesel engines. Some of the fuel, which includes biodiesel, alcohol-diesel emulsions and diesel water emulsions etc. Among which the diesel water emulsion (DWE) is found to be most suitable fuel due to reduction in particulate matter and NOx emission, besides that it also improves the brake thermal efficiency.
Technical Paper

Evaluation of Performance and Emission Characteristics of an Unmodified Naturally Aspirated Compression Ignition Engine on Blends of Diethyl Ether and Diesel

2013-11-27
2013-01-2888
The world today is majorly dependent upon fossil fuels for power generation, of which diesel forms an integral part. Diesel engines, having the highest thermal efficiency of any regular internal or external combustion engine, are widely used in almost all walks of life and cannot be dispensed with in the near future. However, the limited availability of diesel and the adverse effects of diesel engine emissions like nitrogen oxide (NOx) and soot particles raise serious concerns. Hence, their performance and emission improvement continues to be an avenue of great research activity. In this research work, the effects of blending Diethyl Ether with diesel in various proportions (5%, 10%, 15% and 20% by volume) were evaluated on engine performance and emissions of an industrial internal combustion engine.
Technical Paper

Experimental Investigation on Use of Jatropha Oil Ethyl Easter and Diesel Blends in Small Capacity Diesel Engine

2013-09-08
2013-24-0172
Biodiesel in has gained great momentum in last few years and has been a subject of vast research all around the globe. Bulk of the research work carried out so far has been confined to production of methyl esters of vegetable oil that is known as biodiesel in the transesterification process. In the present study, jatropha oil ethyl ester (JOEE) was prepared using transesterification process with ethanol and KOH as a catalyst. The evaluation of important physico-chemical properties was carried and the properties were found within acceptable limits of ASTM/EN standards. A small capacity diesel engine was fuelled with different blends of JOEE and diesel and various performances, emission and combustion characteristics were evaluated. The results suggested that brake thermal efficiency was increased and emissions of carbon monoxide, hydrocarbons and smoke opacity were found lower for JOEE blend confirming better combustion due to the oxygenated fuel and higher cetane rating.
Technical Paper

Experimental Investigation of Orange Peel Oil Methyl Ester on Single Cylinder Diesel Engine

2013-09-08
2013-24-0171
The rising cost and exponential depletion of crude oil in international market has provided an opportunity for the researchers to evaluate the utilization and suitability of various renewable fuels. Amongst variety of alternative fuels, biofuels have the potential to mitigate the vulnerability and the adverse effects of use of fossil fuels. Vegetable/plant oil is better proposition as alternative fuel for diesel engine having much advantage over other alternative fuels. Orange oil from its peel has a huge potential and can be used as an alternate fuel at the most economical purchase rate. In the present investigation experiments were carried out to evaluate performance and emission characteristics of Orange peel oil methyl ester blends (OPOME) (10%, and 20% by volume) on unmodified diesel engine. The properties of these blends were found to be comparable to diesel and confirming to both the American and European standards.
Journal Article

Experimental Investigation of Diesel Engine Fueled with Jatropha Oil Blend with Ethanol

2013-09-08
2013-24-0105
Dwindling petroleum reserves and alarming level of air pollution has been an issue of great concern in recent times and researchers across the world are experimenting on variety of renewable fuels for meeting the future energy demands. Within the gamut of alternative fuels, biofuels are the most promising and have the potential to mitigate climate change and lease a new life to existing IC engines. The vegetable oils are having immense potential in this context and have been used either in neat or modified form by large number of researchers. Jatropha curcus is a perennial plant and bears non edible oil. The plant is drought tolerant and has been cultivated all over the arid and semi-arid areas for reforestation. In the present study, blends of jatropha oil and ethanol have been prepared in 5, 10, 15 and 20% (v/v) and evaluation of important properties of blends has been carried. The results show that properties are quite similar to diesel fuel.
Technical Paper

A Comparative Study of Recent Advancements in the Field of Variable Compression Ratio Engine Technology

2016-04-05
2016-01-0669
The Automobile industry is under great stress due to greenhouse gas emissions and health impacts of pollutants. The rapid decrease of fossil fuels has promoted the development of engine designs having higher fuel economy. At the same time, these designs keep the stringent emission standards in check without sacrificing brake power. Variable Compression Ratio (VCR) is one such measure. This work reviews the technological advancements in the design of a VCR engine. VCR engines can minimize possible risks of irregular combustion while optimizing Brake specific fuel consumption towards higher power and torque. An increase in fuel economy is seen for VCR naturally aspirated engines when coupled with downsizing. In addition to this, emissions of carbon dioxide decreases due to effective utilization of fuel at high loads. Since the first VCR design, there have been various modifications and improvements in VCR engine design.
Technical Paper

Development of an Intake Runner of a CI Engine for Performance Enhancement and Emission Reductions Due to Variations in Air Flow Pattern within the Runner

2016-04-05
2016-01-1015
Recent scenario of fossil fuel depletion as well as rising emission levels has witnessed an ever aggravating trend for decades. The solution to the problems has been addressed by investments and research in the field of fuels; such as the use of cleaner fuels involving biodiesel, alcohol blends, hydrogen and electric drivelines, as well as improvement in traditional technologies such as variable geometry systems, VVT load control strategies etc. The developments have highlighted the enormous potential present in such systems in terms of maximizing engine efficiency and emission reductions. The present paper aims at designing and implementing an intake runner system for a CI engine capable of providing flexibility with variations in operating conditions. Primarily, the design aims at altering the air flow phenomenon within the primary intake of the engine by inducing swirl in the runner through a secondary runner.
Technical Paper

Comparative Study of Emissions and Performance of Hythane Boosted SI Engine Powered by Gasoline-Methanol Blend and Gasoline-Ethanol Blend

2016-04-05
2016-01-1281
The continued reliance on fossil fuel energy resources is not sufficient to cater to the current energy demands. The excessive and continuous use of crude oil is now recognized as unviable due to its depleting supplies and elevating environmental degradation by increased emissions from automobile exhaust. There is an urgent need for a renewable and cleaner source of energy to meet the stringent emission norms. Hythane is a mixture of 20% hydrogen and 80% methane. It has benefits of low capital and operating costs and is a cleaner alternative than crude oil. It significantly reduces tailpipe emissions and is the cheapest way to meet new emission standards that is BS-IV. Hythane produces low carbon monoxide (CO), carbon dioxide (CO2) and hydrocarbons (HC) on combustion than crude oil and helps in reduction of greenhouse gases.
Technical Paper

Experimental Analysis of Retarding the Spark Timing in a Hydrogen Enriched Gasoline and Alcohol Blend Powered Spark Ignition Engine

2016-04-05
2016-01-1277
Gasoline has been the major fuel in transportation, its good calorific value and high volatility have made it suitable for use in different injection methods. The drastic increase in use of carbon based fuels has led to increase in harmful emissions, thus resulting in implementation of stricter emissions norms. These harmful emissions include carbon monoxide and NOx. To meet the new norms and reduce the harmful emissions, better techniques have to be implemented to achieve better combustion of gasoline and reduce the amount of carbon monoxide in the exhaust. One such way of doing this is by enriching gasoline with hydrogen. Due to its low activation energy and high calorific value, the high energy released from hydrogen can be used to achieve complete combustion of gasoline fuel. However, there are certain drawbacks to the use of hydrogen in spark ignition engine, knocking and overheating of engine parts being the major problems.
Technical Paper

An Experimental Analysis of Biodiesel Production from Mixture of Neem (Azadirachta indica) Oil and Sesame (Sesamum indicum L.) Oil and its Performance and Emission Testing on a Diesel Engine

2016-04-05
2016-01-1264
Non-edible vegetable oils have a huge potential for biodiesel production and also known as second generation feedstock’s. Biodiesel can be obtained from edible, non-edible, waste cooking oil and from animal fats also. This paper focuses on production of biodiesel obtained from mixture of sesame (Sesamum indicum L.) oil and neem (Azadirachta indica) oil which are easily accessible in India and other parts of world. Neem oil has higher FFA content than sesame oil. Biodiesel production from neem oil requires pretreatment neutralization procedure before alkali catalyzed Trans esterification process also it takes large reaction time to achieve biodiesel of feasible yield. Neem oil which has very high FFA and sesame oil which has low FFA content are mixed and this mixture is Trans esterified with no pre-treatment process using molar ratio of 6:1.Fuel properties of methyl ester were close to diesel fuel and satisfied ASTM 6751 and EN 14214 standards.
Technical Paper

A Study on Homogeneous Combustion in Porous Medium Internal Combustion Engine: A Review

2017-03-28
2017-01-0788
Rapid depletion in fuel resources owing to the low efficiency of current automobiles has been a major threat to future generations for fuel availability as well as environmental health. Advanced new generation of internal combustion (IC) engines are expected to have far better emissions levels both gaseous (NOx and CO) and particulate matter, at the same time having far lower fuel consumption on a wide range of operating condition. These criteria could be improved having a homogeneous combustion process in an engine. Homogeneous mixing of fuel and air in HCCI leads to cleaner combustion and lower emissions. Since peak temperatures are significantly lower than in typical SI engines, NOx levels and soot are reduced to some extent. Because of absence of complete homogeneous combustion but quasi homogeneous combustion present in HCCI, there is still a possibility of further reducing the emissions as well as enhancing the engine performance.
Technical Paper

Performance Based Optimization of Intake and Injection Parameters of an Advanced Compressed Air Engine Kit

2017-03-28
2017-01-1291
The increment in the application of fossil fuels is leading the world into a catastrophic state both environmentally and economically. Current demand for fuels exceeds its imminent supply and rather sooner than later energy demands will have to shift towards non-conventional fuels to cope with the situation. With constant developments in the automotive sector, several solutions have been found but none have been as good as gasoline to substitute it in the commercial market. One such solution being compressed air might solve this global fuel crisis, which serves a glowing advantage of being cheaper and greener as it produces zero tail-pipe emissions, and can help in decreasing automobile’s contribution to global warming. Though the potential energy stored in the compressed air limits its application to light duty vehicles and still there will be a need for other alternative solutions for the heavy duty vehicles in order to relieve the pressure from the fossil fuels.
Technical Paper

Transient Analysis of Natural Convection around a Pair of Circular Cylinders inside a Square Enclosure

2018-04-03
2018-01-0776
Heat exchangers are widely used in various transportation, industrial, or domestic applications such as thermal power plants, means of heating, transporting and air conditioning systems, electronic equipment and space vehicles. In all these applications improvements in the efficiency of the heat exchangers can lead to substantial cost, space and material savings. Hence considerable research work has been done in the past to seek effective ways to improve the efficiency of heat exchangers. In this paper the effect of natural convection is justified between exterior solid wall surfaces and the surrounding air inside the enclosure. Designing of electronic devices, heavy industrial equipments such as boilers, turbines etc. and building aerodynamics are some of the real world application associated with this study.
Technical Paper

Design and Modelling of Single Cylinder 4 Stroke Gasoline Engine Crankshaft

2019-04-02
2019-01-0767
The crankshaft translates the reciprocatory motion of the piston into rotary motion. A flywheel is generally connected to the crankshaft to reduce the vibrating characteristic of four stroke cycle. Counterweights are added for each reciprocating piston to provide engine balance while operating. Gasoline engines have curtailed compression ratio therefore shorter stoke length as a deduction have higher RPM in comparison to diesel counterpart. A crankshaft is subjected to enormous stresses, potentially equivalent of several tones of force. Failure of the crankshaft is predominantly due to violent vibrations, insufficient lubrication, excessively pressurized cylinder. This research aims to examine the stress subjected to acute points on a crankshaft. Three dimension model of 4 stroke single cylinder engine crankshaft is modeled using SolidWorks v18. End conditions were applied taking into consideration the engine mountings of the crankshaft.
X