Refine Your Search

Topic

Search Results

Technical Paper

A Study on Adaptability of Alternative Fuels for Lean Burn Two-Stroke ATAC Engine

1997-10-27
978472
ATAC is “bulk-like” and/or “non-propagating” combustion caused by compression autoignition of premixture, and it is stable even in the lean region. And ATAC engine is expected to be an engine using alternative fuels which are difficult to apply to usual engines because of their low cetane number. In this study, a two-stroke ATAC engine test was carried out to evaluate an adaptability of alternative fuels for lean burn. Methanol, ethanol, DME, methane and propane were used as the test fuels, and the influence of fuel characteristics on autoignition timing, combustion duration and autoignition temperature were investigated in the lean region. Using oxygenated fuels, the lean limit of ATAC operation region shifts to lean side. ATAC autoignition temperature is not depend on equivalence ratio, delivery ratio and engine speed, and it is only decided by the kind of fuel. The order of the ATAC autoignition temperature is methanol, ethanol, DME, gasoline from lower side.
Technical Paper

An Investigation of the Effect of Thermal Stratification on HCCI Combustion by using Rapid Compression Machine

2007-07-23
2007-01-1870
A significant drawback to HCCI engines is the knocking caused by rapid increases in pressure. Such knocking limits the capacity for high-load operation. To solve this problem, thermal stratification in the combustion chamber has been suggested as possible solution. Thermal stratification has the potential to reduce the maximum value of the rate of pressure increase combustion by affecting the local combustion start time and extending the duration of combustion. The purpose of this study was to experimentally obtain fundamental knowledge about the effect of thermal stratification on the HCCI combustion process. Experiments were conducted in a rapid compression machine (RCM) equipped with a quartz window to provide optical access to the combustion chamber. The machine was fueled with DME, n-Butane, n-Heptane and iso-Octane, all of which are currently being investigated as alternative fuels and have different low temperature characteristics.
Technical Paper

An Investigation of Combustion Control Using EGR for Small and Light HCCI Engine Fuelled with DME

2007-07-23
2007-01-1876
The HCCI engine could offer low NOx, PM emissions and high efficiency. However the operation region of the HCCI combustion is limited because of the knocking at high load and the misfire at low load. Moreover the HCCI principle lacks direct combustion control and needs a system to control the combustion phasing with high accuracy. Today there exists various ways to control the HCCI combustion, such as Variable Valve Train, Variable Compression Ratio, Inlet Air Heating and Dual Fuels. However such variable mechanisms and Inlet Air Heating tend to be heavy and complex. Dual Fuels method needs two types of fuels and has a challenge in infrastructure. In this study, in order to develop a small and light HCCI engine, a simple HCCI combustion control system is proposed. DME (Di-methyl Ether) is used as the fuel to keep the structure small and light. In this system, the mixing ratio of three gases: stoichiometric pre-mixture, hot EGR gas and cold EGR gas is changed by only throttles.
Technical Paper

Mechanism of Road Side NOx Pollution Exhausted by On-Road Driving Diesel Vehicle - Comparison between Vehicle Adopted for New Long Term Regulation and Vehicle Adopted for Long Term Regulation Using On-board Measurement System

2010-10-25
2010-01-2277
Nitrogen oxides, collectively called NOx, from diesel vehicles are considered to be accumulated by particular area of roadsides, so-called "Hot-spot," and result in harmful influence to pedestrians and residents by roadsides. Japanese regulations over emissions of diesel vehicles have been tightened year by year and adopting regulations, emissions in mode test on chassis dynamometer or engine dynamometer have reduced. In this research, it was investigated the effect of introduce of transient mode test, Japanese JE05 mode, to NOx emission in real world and to roadside NOx pollution by road test using on-board measurement system. As test vehicles, 2 ton diesel vehicle which is adopted for Long Term Regulation (steady-state mode test, Diesel 31 mode test, 1998) and 3 ton diesel vehicle adopted for New Long Term Regulation (transient mode test, Japanese JE05 mode, 2005) with on-board measurement system was used.
Technical Paper

Analysis of the Effect of Eco-driving with Early Shift-up on Real-world Emission

2010-10-25
2010-01-2279
For the reduction of greenhouse gas emission in the transportation sector, various countermeasures against CO₂ emission have been taken. The eco-driving has been paid attention because of its immediate effect on the CO₂ reduction. Eco-driving is defined as a driving method with various driving techniques to save fuel economy. The eco-driving method has been promoted to the common drivers as well as the drivers of carriers. Additionally, there are many researches about improvement of fuel efficiency and CO₂ reduction. However, the eco-driving will have the reduction effect of CO₂ emission, the influence of the eco-driving on air pollutant emission such as NOx is not yet clear. In this study, the effect of the eco-driving on real-world emission has been analyzed using the diesel freight vehicle with the on-board measurement system.
Technical Paper

An Investigation on DME HCCI Engine about Combustion Phase Control using EGR Stratification by Numerical Analysis

2012-10-23
2012-32-0077
This work has been investigated the potential of in-cylinder EGR stratification for reducing the pressure rise rate of DME HCCI engines, and the coupling of both thermal stratification and fuel stratification. The numerical analyses were done by using five-zone version of CHEMKIN-II kinetics rate code, and kinetic mechanics for DME. The effects of inert components were used for the presence of EGR in calculation. Three cases of EGR stratification were tested on both thermal stratification and fuel stratification at the fixed initial temperature, pressure and fueling rate at BDC. In order to explore the appropriate stratification of EGR, EGR width was employed from zero to thirty percent. Firstly, EGR homogeneity case which means EGR width zero was examined. Secondly, EGR is located densely in hotter zone for combining with thermal stratification or in richer zone for a combination with fuel stratification. Lastly, the case was judged inversely with the second case.
Technical Paper

The Research about Engine Optimization and Emission Characteristic of Dual Fuel Engine Fueled with Natural Gas and Diesel

2012-10-23
2012-32-0008
CNG/diesel dual-fuel engine is using CNG as a main fuel, and injects diesel only a little as an ignition priming. In this study, remodeling an existing diesel engine into dual-fuel engine that can inject diesel with high pressure by CRDI (Common Rail Direct Injection), and injecting CNG at intake port for premixing. The results show that CNG/diesel dual-fuel engine satisfied coordinate torque and power with conventional diesel engine. And CNG alternation rate is over 89% in all operating ranges of CNG/diesel dual-fuel engine. PM emission is lower 94% than diesel engine, but NOx emission is higher than diesel engine. The output of dual fuel mode is 95% by the diesel mode. At this time, amount of CO₂ and PM are decreased while CO, NOx, and THC are increased. In NEDC mode, exhaust gases except NOx are decreased.
Technical Paper

Combined Effects of Spark Discharge Pattern and Tumble Level on Cycle-to-Cycle Variations of Combustion at Lean Limits of SI Engine Operation

2017-03-28
2017-01-0677
Improving the thermal efficiency of spark ignition (SI) engine is strongly required due to its widespread use but considerably less efficiency than that of compression ignition (CI) engine. Although lean SI engine operation can offer substantial improvements of the thermal efficiency relative to that of traditional stoichiometric SI operation, the cycle-to-cycle variations of combustion increases with the level of air dilution, and becomes unacceptable. To improve the stability of lean operation, this study examines the effects of spark discharge pattern and tumble level on cycle-to-cycle variations of combustion at lean limits. The spark discharge pattern was altered by a custom inductive ignition system using ten spark coils and the tumble level was increased by a custom adapter installed in the intake port (tumble adapter).
Technical Paper

Study on Characteristics of Particulate Emissions from a Direct Injection Diesel Engine using a Freezing Method in Sampling Process

1984-09-01
841077
Reduction of particulate emissions from diesel engine is an important theme from the view point of air pollution. Experiments were carried out using a four-stroke single cylinder direct-injection diesel engine. A new method to measure diesel particulates has been developed. Particulates were sampled with a freezing method just behind an exhaust valve and examined through a scanning electron microscope. Shape and structure of particulates and the size distributions are measured under wide operating conditions obtained with above method. The total mass of particulate emissions was measured using a dilution tunnel sampling system. The heat release processes were analyzed using indicator diagrams and the relation between burning condition and particulate emissions were discussed, after systematic experiments under constant revolution speed of 2000 r/min for several load and injection timing conditions.
Technical Paper

Effects of Intake Oxygen Concentration on the Characteristics of Particulate Emissions from a D.I. Diesel Engine

1986-09-01
861233
The concept of oxygen enriched charging (OEC) was exploratively examined as a means of reducing particulate emissions from a direct injection (DI) diesel engine. A single cylinder DI engine was operated with intake gas oxygen concentrations of 21% to 29%, under a constant engine speed of 40 Hz, and several load conditions. It was found that OEC reduces particulate emissions from a DI diesel engine for all operating conditions tested. Insoluble particulate is especially suppressed by OEC at high load conditions. Oxygen enriched charging has little effect on particulate size distribution at high loads when the mass fraction of extractables is low. Fuel consumption, at constant injection timing, is improved a little by OEC. Emissions of NOx increase exponentially with increasing oxygen concentration. Ignition delay is decreased by OEC and this allows injection timing to be retarded to reduce NOx emissions without increasing the specific fuel consumption.
Technical Paper

Surrounding Gas Effects on Soot Formation and Extinction - Observation of Diesel Spray Combustion Using a Rapid Compression Machine

1993-03-01
930603
A single action rapid compression machine was developed to observe the soot formation and oxidation processes in a diesel spray flame. Two color method was applied to analyze the flame temperature and KL factor from the flame image taken by high speed camera. Variation in gas oxygen concentration of the surrounding gas was achieved by adding different quantities of pure oxygen, nitrogen, carbon dioxide and argon gases to charged air within a range from 17 to 25 vol.% oxygen to examine the effects of the surrounding gas composition and the temperature, and of the flame temperature on soot formation and extinction. The initial gas temperature has much effect not only on the ignition but on soot formation speed. The higher oxygen concentration gives the higher flame temperature and the faster soot oxidation rate in the flame. Carbon dioxide has a soot reduction effect in spite of its lower flame temperature.
Technical Paper

Experimental Study of Transient Gas Jet Impinging on a Wall

1990-02-01
900479
The process of forming mixtures of injected fuels and ambient air has significant effects on the ignition and combustion process in the direct injection engine. In these engines fuel is injected intermittently and fuel jet impinges on a combustion chamber wall. This study deals with a fundamental experiment on the mixing process of the transient gas jet together with the instantaneous concentration measurement and statistical analysis of the transient turbulent mixing process in the jet. Helium or carbon dioxide is injected at constant pressure into quiescent atmosphere through the single shot device. This paper presents a laboratory automation system for measuring the characteristics of transient gas jet and processing the data. A discussion on the process of mixture formation of transient gas jets impinging on a wall is carried out with time- and space- resolved concentration distribution.
Technical Paper

Two–Dimensional Imaging of Formaldehyde Formed During the Ignition Process of a Diesel Fuel Spray

2000-03-06
2000-01-0236
The time of, and location where ignition first occurs in a diesel fuel spray were investigated in a rapid compression machine (RCM) using the two–dimensional techniques of silicone oil particle scattering imaging (SSI), and the planar laser induced fluorescence (LIF) of formaldehyde. Formaldehyde has been hypothesized to be one of the stable intermediate species marking the start of oxidation reactions in a transient spray under compression ignition conditions. In this study, the LIF images of the formaldehyde formed in a diesel fuel spray during ignition process have been successfully obtained for the first time by exciting formaldehyde with the 3rd harmonic of the Nd:YAG laser. SSI images of the vaporizing spray, and the LIF images of formaldehyde were obtained together with the corresponding time record of combustion chamber pressures at initial ambient temperatures ranging from 580 K to 790 K.
Technical Paper

Effects of Aromatics Content and 90% Distillation Temperature of Diesel Fuels on Flame Temperature and Soot Formation

2001-05-07
2001-01-1940
In this study, the effects of fuel properties, aromatics content and 90% distillation temperature T90, on flame temperature and soot formation were studied using a rapid compression machine (RCM). Aromatics content and T90 distillation temperature were parameters isolated from influence of each other, and from cetane number. A fuel spray was injected in the RCM combustion chamber by a single nozzle hole. The ignition and combustion processes of diesel spray were observed by a high-speed direct photography. Flame temperature and KL factor (which indicates the soot concentration), were analyzed by the two-color method. The rate of heat release was analyzed from indicated diagrams. The fuels with aromatics content showed higher flame temperature. The fuel with highest T90 distillation temperature showed highest flame temperature.
Technical Paper

Effect of Nozzle Diameter and EGR Ratio on the Flame Temperature and Soot Formation for Various Fuels

2001-05-07
2001-01-1939
In this study, effects of nozzle hole diameter and EGR ratio on flame temperature (indication of NO formation) and KL value (indication of soot formation) were investigated. Combustion of a single diesel fuel spray in the cylinder of a rapid compression machine (RCM) was analyzed. Three nozzles with different hole diameter were used corresponding to present, near term and long term heavy duty diesel engine specifications. EGR was simulated through 2%vol. CO2 addition to the inlet air and by increase of in-cylinder surrounding gas temperature. Various types of fuels were used in this. The ignition and combustion processes of diesel fuel spray were observed by a high-speed direct photography and by indicated pressure diagrams. Flame temperature and KL factor were analyzed by a two-color method. With larger nozzle hole diameters there are larger high temperature areas. With smaller nozzle hole diameters there is more soot formed. Introduction of 2% vol.
Technical Paper

Numerical Analysis of Auto Ignition and Combustion of n-Butane and Air Mixture in the Homogeneous Charge Compression Ignition Engine by Using Elementary Reactions

2003-03-03
2003-01-1090
The combustion mechanism of the homogeneous charge compression ignition (HCCI) engine has been investigated by numerical calculations. Calculations were carried out using n-butane/air elementary reactions at 0 dimension and adiabatic condition to simplify the understanding of chemical reaction mechanisms in the HCCI engine without complexities of walls, crevices, and mixture inhomogeneities. n-Butane is the fuel with the smallest carbon number in the alkane family that shows two-stage auto-ignition, heat release with low temperature reaction (LTR) and high temperature reaction (HTR), similar to higher hydrocarbons such as gasoline at HCCI combustion. The CHEMKIN II code, SENKIN and kojima's n-butane elementary reaction scheme were used for the calculations. This paper consists of three main topics. First, the heat release mechanisms of the HCCI engine were investigated. The results show that heat release with LTR is HCHO oxidation reactions.
Technical Paper

Study on Local Air Pollution Caused by NOx from Diesel Freight Vehicle

2002-03-04
2002-01-0651
An on-board measurement system that simultaneously measures road traffic, vehicle running conditions and exhaust emissions was installed in a diesel freight vehicle with two tons payload. Actual NOx mass emissions were compared with that measured in a typical test mode for urban cities on a chassis dynamometer. The frequency of vehicle accelerations in actual urban cities was found to exceed that of a typical test mode for urban cities on a chassis dynamometer, which resulted in increased NOx from actual running conditions compared with the typical test mode for urban cities. The dynamics of NOx emissions at an actual roadside was also analyzed. It was observed that NOx emission based on distance with an actual city route test was about two times higher than that of a free way route and a typical test mode for urban cities. The reason for high NOx with the city route was explained by the higher frequency of lower gears at which higher NOx is emitted.
Technical Paper

Analysis of the combustion dispersion mechanism in HCCI Engine

2009-11-03
2009-32-0086
Delaying CA50(Crank Angle of 50% Heat Release) of the HCCI engine to expansion stroke can lead to high indicated thermal efficiency as well as the avoidance of knocking. However, this method could induce the problem of cycle variability. In this study, the cycle-to-cycle variation of a HCCI engine fueled with DME was investigated. Experimental parameters of each cycle, such as in-cylinder temperature, pressure and gas flow rate, were recorded by fast response system, and analyzed consequently. Moreover, the interdependency between the combustion and the performance parameters were evaluated.
Technical Paper

Development of the Control System Using EGR for the HCCI Engine Running on DME

2005-10-12
2005-32-0062
Homogeneous Charge Compression Ignition (HCCI) engine attracts much attention because of its high thermal efficiency and low NOx, PM emissions. On the other hand, Di-Methyl Ether (DME) is expected as one of alternative fuel for the internal combustion engines. In this study, four-stroke HCCI engine running on DME is developed to make it realistic application in production engines. This paper shows construction of the control method using both internal EGR at high temperature and external EGR at low temperature and estimates the performance of developed HCCI engine. Besides combustion characteristics of DME and the effects of EGR are researched with experiment and numerical calculation with elementary reactions. As a result, developed HCCI engine got comparable high thermal efficiency to conventional diesel engine but much lower Indicated Mean Effective Pressure (IMEP) than that. Meanwhile it can be said that DME is suitable fuel for the HCCI engines in combustion characteristics.
Technical Paper

17 Study on Auto-Ignition and Combustion Completion of n-Butane in a Two-stroke Homogeneous Charge Compression Ignition (HCCI) Engine

2002-10-29
2002-32-1786
Homogeneous Charge Compression Ignition (HCCI) is good method to be higher efficiency and to reduce NOx emission and particular matter together than conventional SI combustion engine. But HCCI depends on chemical reaction of fuel and air mixture. So controlling of ignition timing is difficult, and HCCI is high THC and CO emissions because temperature can't reach the enough temperature to reduce those. In this study, we investigated factor for auto ignition timing and combustion completion on n-Butane/Air mixture by a two-stroke HCCI engine. Auto Ignition temperature are known to be decided by fuel(1), for n-Butane, the temperature was 1150±30K. And as we researched combustion completion from In-cylinder gas temperature, increasing In-cylinder gas temperature caused high combustion efficiency and low THC, CO emissions.
X