Refine Your Search

Topic

Search Results

Journal Article

Investigation of a Methane Scavenged Prechamber for Increased Efficiency of a Lean-Burn Natural Gas Engine for Automotive Applications

2015-04-14
2015-01-0866
Scarce resources of fossil fuels and increasingly stringent exhaust emission legislation push towards a stronger focus to alternative fuels. Natural gas is considered a promising solution for small engines and passenger cars due to its high availability and low carbon dioxide emissions. Furthermore, natural gas indicates great potential of increased engine efficiency at lean-burn operation. However, the ignition of these lean air/fuel mixtures leads to new challenges, which can be met by fuel scavenged prechambers. At the Institute of Internal Combustion Engines of the Technische Universitaet Muenchen an air cooled natural gas engine with a single cylinder displacement volume of 0.5 L is equipped with a methane scavenged prechamber for investigations of the combustion process under real engine conditions. The main combustion chamber is supplied with a lean premixed air/fuel mixture.
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Journal Article

Heat Release Calculation of Internal Combustion Engines by Analyzing the Flame Radiation with Crankshaft Angle Resolution

2017-03-28
2017-01-0787
Improving efficiency and reducing emissions are the principal challenges in developing new generations of internal combustion engines. Different strategies such as downsizing or sophisticated after-treatment of exhaust gases are pursued. Another approach aims at optimizing the parameterization of the engine. Correct adjustments of ignition timings, waste gate position and other factors have significant influence on the combustion process. A multitude of application data is generated during the development process to predefine appropriate settings for most situations. Improvements in regards to the application effort and the quality of the settings can be achieved by measuring the combustion process and optimizing the parametrization in a closed loop. However, cylinder pressure sensors that are used during the development process are too expensive for series applications.
Technical Paper

Using a Phenomenological Simulation Approach for the Prediction of a Dual-Fuel Pilot Injection Combustion Process

2020-03-10
2020-01-5013
Development processes for modern combustion engines already make substantial use of more or less sophisticated simulation approaches. The enhancement of computational resources additionally allows the increasing use of simulation tools in terms of time-consuming three-dimensional CFD approaches. In particular, the preliminary estimation of feasible operating ranges and strategies requires a vast multitude of single simulations. Here, multi-zone simulation approaches incorporate the advantages of comparably short simulation durations. Nevertheless, the combination with more detailed sub-models allows these rather simple modeling approaches to offer considerable insight into relevant engine operation phenomena. In the context of combustion process development, this paper describes a phenomenological model approach for the prediction of operating point characteristics of a dual-fuel pilot injection combustion process.
Journal Article

Setting Up a Measuring Device to Determine the Friction of the Piston Assembly

2011-04-12
2011-01-0227
This SAE Technical Paper gives a summary of the essential findings in the development and operation of a test engine dedicated to the measuring of the friction between the piston group and the liner. Firstly the fundamental demands on the high-precision and close to real engine operation friction measuring are laid out. Subsequently the basic engine, the measuring system based on the floating liner method including a gas balance device, as well as the implemented measuring technique are specified. Major influencing variables on the friction of the piston assembly and its interference variables are also summarized. Extensive information about the systematic and strategies for the test engine's operation startup are given in acknowledgement of influencing and interference variables. This strategy reduces the developmental and startup process of an engine dedicated to the measuring of piston group friction.
Journal Article

Analysis of the Mixed Friction in the Piston Assembly of a SI Engine

2012-04-16
2012-01-1333
Presented within the framework of this SAE Technical Paper are the highly accurate results of friction experiments, performed upon a floating-liner, single-cylinder test engine with a capacity 0.5 liters and crank angle resolution during motored and fired operation. This allows for the measurement of mixed friction zones at the dead centers. These mixed friction zones can result in friction losses and lead to wear in the components in-volved. The strength of the friction forces in any given mixed friction zone is largely dependent on the operating point. This is why the influence of each of the most important operating parameters - speed (rpm), load, oil and coolant temperature - is individually analysed, before the interactions, which are depicted in the resultant engine map, are discussed.
Technical Paper

Analysis and Modeling of Heat Transfer in the SI Engine Exhaust System During Warm-Up

2007-04-16
2007-01-1092
In order to meet the severe emission restrictions imposed by SULEV and EURO V standards the catalytic converter must reach light-off temperature during the first 20 seconds after engine cold start. Thermal losses in the exhaust manifold are driven by the heat transfer of the pulsating and turbulent exhaust flow and affect significantly the warm-up time of the catalyst. In the present paper an investigation concerning the gas-side heat transfer in the exhaust system of a spark ignited (SI) combustion engine with retarded ignition timing and secondary air injection into the exhaust port is reported. Based on this analysis, the warm-up simulation of a one-dimensional flow simulation tool is improved for an evaluation of different exhaust system configurations.
Technical Paper

Common Rail Diesel Injectors with Nozzle Wear: Modeling and State Estimation

2017-03-28
2017-01-0543
This study discusses model-based injection rate estimation in common rail diesel injectors exhibiting aging phenomena. Since they result in unexpected injection behavior, aging effects like coking or cavitation may impair combustion performance, which justifies the need for new modeling and estimation approaches. To predict injection characteristics, a simulation model for the bottom section of the injector is introduced, with a main focus on modeling the hydraulic components. Using rail pressure and control piston lift as inputs, a reduced model is then derived in state-space representation, which may be used for the application of an observer in hardware-in-the-loop (HIL) environments. Both models are compared and validated with experimental data, with which they show good agreement. Aging effects and nozzle wear, which result in model uncertainties, are considered using a fault model in combination with an extended Kalman filter (EKF) observer scheme.
Technical Paper

Experimental Investigation of Orifice Design Effects on a Methane Fuelled Prechamber Gas Engine for Automotive Applications

2017-09-04
2017-24-0096
Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
Technical Paper

Layout and Optimization of a Piston Ring-pack for AUDI V6 SI-engine

2012-09-10
2012-01-1623
The use of modern simulation tools in the engine product development process is explained using the layout of a piston and its piston ring-pack of AUDI V6 SI-engine as example. Based on the requirements for piston rings in a SI-engine the possible trade-offs are explained. A base layout for a ring-pack for the specific engine is presented. Further the validity of the simulation model is rated as the simulation output is compared to actual dynamometer measurements of the blow-by map of the engine. Additionally a test setup is presented, which measures piston ring movement and the pressures between the rings and in the ring grooves. Also these measurement results are compared to the simulation. Using DOE (design of experiments) on the base layout potentials for optimization are shown and applied. To identify the positive effects in the engine pistons with piston rings are fabricated in accordance with the DOE recommendations.
Technical Paper

Calculation of the Piston Assembly Friction: Classification, Validation and Interpretation

2012-04-16
2012-01-1323
This SAE Technical Paper contains detailed data which are relevant for the calculation of the friction forces of the piston assembly in internal combustion engines. Useful ways of employing calculations besides measurements are exactly classified for the optimization of the piston assembly system in order to reduce friction losses. In the first step the theoretical basics for the calculation of the tribological system are introduced. Referring to the theory, the paper goes into detail about the basic set-up and the modeling degree of the calculation program. Furthermore, measured and calculated curves of friction forces are compared for different operating points. In addition, analysis of the crank-angle resolved friction force are presented with varying engine speeds, oil temperatures and loads and a detailed interpretation of the results is given.
Technical Paper

Development of Dynamic Models for an HCCI Engine with Fully Variable Valve-Train

2013-04-08
2013-01-1656
For the next stage of Homogeneous Charge Compression Ignition (HCCI) engine researches, the development of an engine controller, taking account of dynamics is required. The objective of this paper is to develop dynamic multi input and multi output HCCI engine models and a controller to deal with variable valve lift, variable valve phase, and fuel injection. First, a physical continuous model has been developed. This model mainly consists of air flow models, an ignition model, and a combustion and mechanical model of the engine. The flow models use a receiver model on volumetric elements such as an intake manifold and a valve flow model on throttling elements such as intake valves. Livengood-wu integration of Arrhenius function is used to predict ignition timing. The combustion duration is expressed as a function of ignition timings.
Technical Paper

Cetane Number Determination by Advanced Fuel Ignition Delay Analysis in a New Constant Volume Combustion Chamber

2015-04-14
2015-01-0798
A new constant volume combustion chamber (CVCC) apparatus is presented that calculates the cetane number (CN) of fuels from their ignition delay by means of a primary reference fuel calibration. It offers the benefits of low fuel consumption, suitability for non-lubricating substances, accurate and fast measurements and a calibration by primary reference fuels (PRF). The injection system is derived from a modern common-rail passenger car engine. The apparatus is capable of fuel injection pressures up to 1200 bar and requires only 40 ml of the test fuel. The constant volume combustion chamber can be heated up to 1000 K and pressurized up to 50 bar. Sample selection is fully automated for independent operation and low levels of operator involvement. Capillary tubes employed in the sampling system can be heated to allow the measurement of highly viscous fuels.
Technical Paper

The Potential of Gasoline Fueled Pre Chamber Ignition Combined with Elevated Compression Ratio

2020-04-14
2020-01-0279
Pre-chamber ignition is a method to simultaneously increase the thermal efficiency and to meet ever more stringent emission regulations at the same time. In this study, a single cylinder research engine is equipped with a tailored pre-chamber ignition system and operated at two different compression ratios, namely 10.5 and 14.2. While most studies on gasoline pre-chamber ignition employ port fuel injection, in this work, the main fuel quantity is introduced by side direct injection into the combustion chamber to fully exploit the knock mitigation effect. Different pre-chamber design variants are evaluated considering both unfueled and gasoline-fueled operation. As for the latter, the influence of the fuel amount supplied to the pre-chamber is discussed. Due to its principle, the pre-chamber ignition system increases combustion speeds by generating enhanced in-cylinder turbulence and multiple ignition sites. This property proves to be an effective measure to mitigate knocking effects.
Journal Article

Identification of In-Cylinder Aerosol Flow Induced Emissions due to Piston Ring Design in a DISI Single Cylinder LV Engine Using Oxygenated Synthetic Fuels

2021-04-06
2021-01-0625
In the near future, pollutant and GHG emission regulations in the transport sector will become increasingly stringent. For this reason, there are many studies in the field of internal combustion research that investigate alternative fuels, one example being oxygenated fuels. Additionally, the design of engine components needs to be optimized to improve the thresholds of clean combustion and thus reduce particulates. Simulations based on PRiME 3D® for dynamic behaviors inside the piston ring group provide a guideline for experimental investigation. Gas flows into the combustion chamber are controlled by adjusting the piston ring design. A direct comparison of regular and synthetic fuels enables to separate the emissions caused by oil and fuel. This study employed a mixture of dimethyl carbonate (DMC) and methyl formate (MeFo).
Technical Paper

Injection Process of the Synthetic Fuel Oxymethylene Ether: Optical Analysis in a Heavy-Duty Engine

2020-09-15
2020-01-2144
Oxygenated synthetic fuels such as oxymethylene ether (OME) are a promising approach to reduce the emissions of diesel engines and to improve sustainability of mobility. The soot-free combustion of OME allows an optimization of the combustion process to minimize remaining pollutants. Considering the injection system, one strategy is to decrease the rail pressure, which has a positive impact on the reduction of nitrogen oxides without increasing the particle formation. Furthermore, due to the reduced lower heating value of OME compared to diesel fuel, an adaptation of the injector nozzle is recommended. This work describes a method for analyzing the injection process for OME, using the Mie scattering effect in an optically accessible heavy-duty diesel engine. The design of the 1.75 l single cylinder engine allows operation up to 300 bar peak cylinder pressure, providing optical access through the piston bowl and through a second window lateral below the cylinder head.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

Investigation and Comparison of the Prediction Capabilities of Multiple 0D/1D Combustion Calibration Strategies Using different Turbocharger Systems as Calibration Basis

2022-03-29
2022-01-0378
Reliably calibrated simulation and combustion models not only enable the prediction of non-validated operating points, but also compensate for the time that would be required for costly test bench measurements. Under the premise of investigating various turbocharging concepts for a combustion engine without the need for recalibration, the present work will discuss the influence of two different exhaust gas turbocharger systems on model calibration. Replacing turbochargers is a practical way to test the predictive performance of simulations, since they can drastically affect and change the thermodynamic boundary conditions for comparable operating points. On the one hand, the choice of the appropriate calibration strategy and, on the other hand, the interchangeability of the respective calibration will be discussed.
Technical Paper

Identification of Aging Effects in Common Rail Diesel Injectors Using Geometric Classifiers and Neural Networks

2016-04-05
2016-01-0813
Aging effects such as coking or cavitation in the nozzle of common rail (CR) diesel injectors deteriorate combustion performance. This is of particular relevance when it comes to complying with emission legislation and demonstrates the need for detecting and compensating aging effects during operation. The first objective of this paper is to analyze the influence of worn nozzles on the injection rate. Therefore, measurements of commercial solenoid common rail diesel injectors with different nozzles are carried out using an injection rate analyzer of the Bosch type. Furthermore, a fault model for typical aging effects in the nozzle of the injector is presented together with two methods to detect and identify these effects. Both methods are based on a multi-domain simulation model of the injector. The needle lift, the control piston lift and the pressure in the lower feed line are used for the fault diagnosis.
Technical Paper

Real-Time Measurement of the Piston Ring Gap Positions and Their Effect on Exhaust Engine Oil Emission

2018-05-05
2018-01-5006
Measurement techniques for piston ring rotation, engine oil emission and blow by have been implemented on a single-cylinder petrol engine. A novel method of analysis allows continuous and fast real-time identification of the piston ring rotation of the two compression rings, while the mass-spectrometric analysis of the exhaust gas delivers the cylinder oil emission instantly and with a high temporal resolution. Only minor modifications to the piston rings were made for the insertion of the γ-emitters, the rings rotate freely around the circumference of the piston. The idea of this setup is that through online observation at the test bench, instant feedback of the measured variables is available, making it possible to purposefully select and compare measurement points. The high time resolution of the measurement methods enables the analysis of dynamic effects. In this article, the measurement setup and evaluation method is described.
X