Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Numerical Simulation for Parametric Study of a Two-Stroke Direct Injection Linear Engine

2002-05-06
2002-01-1739
Research at West Virginia University has led to the development of a novel crankless reciprocating internal combustion engine. This paper presents a time-based model used to investigate the performance of two-stroke direct injection compression ignition linear engines. The two-stroke linear engine consists of two pistons, linked by a connecting rod, that are allowed to move freely in response to changes in the engine's fueling and load across the full operating cycle of the engine. The computer model uses a combination of a series of dynamic and thermodynamic numerical equations, which have been solved to provide a detailed analysis of the two-stroke direct injection linear engine operation. Parameters such as rate of combustion, convection heat transferred inside the cylinders, friction forces, external loads, acceleration, velocity profile, compression ratio, and in-cylinder pressures were modeled.
Technical Paper

Continuously Varying Exhaust Outlet Diameter to Improve Efficiency and Emissions of a Small SI Natural Gas Two-Stroke Engine by Internal EGR

2018-04-03
2018-01-0985
With continuously increasing concern for the emissions from two-stroke engines including regulated hydrocarbon (HC) and oxides of nitrogen (NOx) emissions, non-road engines are implementing proven technologies from the on-road market. For example, four stroke diesel generators now include additional internal exhaust gas recirculation (EGR) via an intake/exhaust valve passage. EGR can offer benefits of reduced HC, NOx, and may even improve combustion stability and fuel efficiency. In addition, there is particular interest in use of natural gas as fuel for home power generation. This paper examines exhaust throttling applied to the Helmholtz resonator of a two-stroke, port injected, natural gas engine. The 34 cc engine was air cooled and operated at wide-open throttle (WOT) conditions at an engine speed of 5400 RPM with fueling adjusted to achieve maximum brake torque. Exhaust throttling served as a method to decrease the effective diameter of the outlet of the convergent cone.
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Technical Paper

Quantification of Windage and Vibrational Losses in Flexure Springs of a One kW Two-Stroke Free Piston Linear Engine Alternator

2019-04-02
2019-01-0816
Methods to quantify the energy losses within linear motion devices that included flexural springs as the main suspension component were investigated. The methods were applied to a two-stroke free-piston linear engine alternator (LEA) as a case study that incorporated flexure springs to add stiffness to the mass-spring system. Use of flexure springs is an enabling mechanism for improving the efficiency and lifespan in linear applications e.g. linear engines and generators, cryocoolers, and linear Stirling engines. The energy loss due to vibrations and windage effects of flexure springs in a free piston LEA was investigated to quantify possible energy losses. A transient finite element solver was used to determine the effects of higher modes of vibration frequencies of the flexure arms at an operational frequency of 65 Hz. Also, a computational fluid dynamics (CFD) solver was used to determine the effects of drag force on the moving surfaces of flexures at high frequencies.
Technical Paper

Investigation of On-Road Crosswinds on Interstate Tractor-Trailer Aerodynamic Efficiency

2014-04-01
2014-01-0608
Heavy duty tractor-trailers under freeway operations consume about 65% of the total engine shaft energy to overcome aerodynamic drag force. Vehicles are exposed to on-road crosswinds which cause change in pressure distribution with a relative wind speed and yaw angle. The objective of this study was to analyze the drag losses as a function of on-road wind conditions, on-road vehicle position and trajectory. Using coefficient of drag (CD) data available from a study conducted at NASA Ames, Geographical Information Systems model, time-varying weather data and road data, a generic model was built to identify the yaw angles and the relative magnitude of wind speed on a given route over a given time period. A region-based analysis was conducted for a study on interstate trucking operation by employing I-79 running through West Virginia as a case study by initiating a run starting at 12am, 03/03/2012 out to 12am, 03/05/2012.
X