Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Insights into Deposit Formation in High Pressure Diesel Fuel Injection Equipment

2010-10-25
2010-01-2243
The need to meet the US 2007 emissions legislation has necessitated a change in Diesel engine technology, particularly to the fuel injection equipment (FIE). At the same time as these engine technology changes, legislation has dictated a reduction in fuel sulphur levels and there has also been increased use of fatty acid methyl esters (FAME) or biodiesel as a fuel blending component. The combination of changes to the engine and the fuel has apparently led to a sharp rise in the number of reports of field problems resulting from deposits within the FIE. The problem is usually manifested as a significant loss of power or the engine failing to start. These symptoms are often due to deposits to be found within the fuel injectors or to severe fouling of the fuel filter. The characteristics of the deposits found within different parts of the fuel system can be noticeably different.
Technical Paper

Operating Experience of Diesel Vehicles Equipped with Particulate Filters and Using Fuel Additive for Regeneration

2000-03-06
2000-01-0474
Work was carried out on three passenger cars and a light truck. The test vehicles were chosen to cover a range of engine technologies. Different DPF technologies were also employed. The programme showed that an improved fuel additive based on the combination of iron and strontium compounds would allow all four vehicles to be successfully operated under a wide range of conditions. The three passenger cars were driven over the road for considerable distances. Regeneration of the DPF was successfully achieved under normal operating conditions in all the vehicles without recourse to use of additional heaters, fuel injection or other technique to assist regeneration. Fuel additive treat rate was low, suggesting that long-term operation without significant ash accumulation in the DPF could be achieved.
Technical Paper

Results From a ¼ Million km, Heavy-Duty Truck Trail, Using FBC Regenerated DPFs

2004-03-08
2004-01-0074
Diesel particulate filters (DPF), in conjunction with fuel borne catalysts (FBC) to facilitate regeneration, are now an accepted technology for passenger car application. Retrofitting of such systems has demonstrated the possibility of applying this technology to heavy-duty vehicles. To demonstrate the efficacy of DPF/FBC systems and to assess their affect on engine durability and economy, five heavy-duty trucks were fitted with DPF/FBC systems. After the completion of over ¼ million kms four trucks underwent a full engine strip-down and rating. This paper briefly reviews the installation of the systems and their effect on the regulated emissions, present details of the mileage accumulation and of the engine strip-downs. The conclusions drawn are that after a ¼ million km of use with the DPF/FBC systems the trucks had not suffered any abnormal deterioration and in fact there was some indication of reduced wear on the engine.
Technical Paper

Diesel Particulate Filters and Fuel Borne Catalysts as a Viable Solution to Reduced Airborne Particulate

2001-11-01
2001-28-0041
There is mounting worldwide concern over the health effects of airborne ultra-fine particles. Of greatest concern are the risks due to the cancer-inducing properties of these particles and the aggravation of existing respiratory diseases by the ultra-fine (i.e. <2.5 micron) fraction. This disquiet has already resulted in legislation, regulations and other measures, either mandated or proposed, in the industrialised world to severely restrict particulate emissions from diesel-fuelled automotive transport. Emissions of particles from both new and existing vehicles have been addressed. With the rapid growth anticipated in some developing countries they to will need to address this problem. This paper outlines some alternative solutions to the problem, ranging from alternative power sources, alternative fuels, alternative engine technologies and after-treatment strategies. It also outlines what is required to implement these different solutions.
Technical Paper

Preliminary Results from a Six Vehicle, Heavy Duty Truck Trial, Using Additive Regenerated DPFs

2002-03-04
2002-01-0431
Impending legislation will make it almost inevitable that heavy-duty trucks will have to be fitted with some form of particulate removal after-treatment device. The challenge is to provide a system that is not only environmentally acceptable and cost effective but also durable enough to meet the demands of the trucking industry. Diesel particulate filters (DPF), in conjunction with fuel borne catalysts to facilitate regeneration, are now a recognised technology for meeting future passenger car emissions limits. Retrofitting of such systems to older technology vehicles, where specific environmental concerns exist, has demonstrated the possibility of applying this technology to the heavy-duty vehicle sector. Most of these retrofit applications tend to be to vehicles with a relatively low duty cycle. Whereas this type of duty cycle poses the greatest challenge to the successful regeneration of the filters it is not necessarily the most arduous test of the durability of the system.
Journal Article

Investigations on Deposit Formation in the Holes of Diesel Injector Nozzles

2011-08-30
2011-01-1924
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Influence of High Injection Pressure on Diesel Fuel Stability: A Study of Resultant Deposits

2009-06-15
2009-01-1877
Recent developments in diesel engines and fuel injection equipment together with the move to ULSD and bio-blends have seen an increase in reports regarding deposits in both injectors and filters. Historically deposits have been generated from a number of sources: bio-contamination, both aerobic and non-aerobic, water contamination, lube oil adulteration, additives, dirt, metals in fuel, and biodiesel degradation. These may be ascribed to “poor housekeeping,” incorrect additivation, deliberate adulteration or some combination. However the recently observed deposits differ from these. The deposits are described and indicate possible precursor molecules that support proposed mechanisms and their ability to form filter deposits.
Technical Paper

The Emerging Market for Biodiesel and the Role of Fuel Additives

2007-07-23
2007-01-2033
With growing concern over greenhouse gases there is increasing emphasis on reducing CO2 emissions. Despite engine efficiency improvements plus increased dieselisation of the fleet, increasing vehicle numbers results in increasing CO2 emissions. To reverse this trend the fuel source must be changed to renewable fuels which are CO2 neutral. A common route towards this goal is to substitute diesel fuel with esterified seed oils, collectively known as Fatty Acid Methyl Esters. However a fundamental change to the fuel chemistry produces new challenges in ensuring compatibility between fuel and engine performance/durability. This paper discusses the global situation and shows how fuel additives can overcome the challenges presented by the use of biodiesel.
Journal Article

Temperature Programmed Oxidation as a Technique for Understanding Diesel Fuel System Deposits

2010-05-05
2010-01-1475
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
Journal Article

Sodium Contamination of Diesel Fuel, its Interaction with Fuel Additives and the Resultant Effects on Filter Plugging and Injector Fouling

2013-10-14
2013-01-2687
Diesel fuel distilled from crude oil should contain no greater than trace amounts of sodium. However, fuel specifications do not include sodium; there is a limit of five parts per million for the amount of sodium plus potassium in fatty acid methyl esters (FAME) used as biodiesel. Sodium compounds are often used as the catalyst for the esterification process for producing FAME and sodium hydroxide is now commonly used in the refining process to produce ultra-low sulphur diesel (ULSD) fuel from crude oil. Good housekeeping should ensure that sodium is not present in the finished fuel. A finished fuel should not only be free of sodium but should also contain a diesel fuel additive package to ensures the fuel meets the quality standards introduced to provide reliable operation, along with the longevity of the fuel supply infrastructure and the diesel engines that ultimately burn this fuel.
Book

Automotive Fuels Reference Book, Third Edition

2014-03-05
The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine.
X