Refine Your Search

Topic

Search Results

Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Journal Article

Temperature Programmed Oxidation as a Technique for Understanding Diesel Fuel System Deposits

2010-05-05
2010-01-1475
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
Journal Article

Possible Mechanism for Poor Diesel Fuel Lubricity in the Field

2012-04-16
2012-01-0867
Traditionally, diesel fuel injection equipment (FIE) has frequently relied on the diesel fuel to lubricate the moving parts. When ultra low sulphur diesel fuel was first introduced into some European markets in the early 1980's it rapidly became apparent that the process of removing the sulphur also removed other components that had bestowed the lubricating properties of the diesel fuel. Diesel fuel pump failures became prevalent. The fuel additive industry responded quickly and diesel fuel lubricity additives were introduced to the market. The fuel, additive and FIE industries expended much time and effort to develop test methods and standards to try and ensure this problem was not repeated. Despite this, there have recently been reports of fuel reaching the end user with lubricating performance below the accepted standards.
Journal Article

Investigations on Deposit Formation in the Holes of Diesel Injector Nozzles

2011-08-30
2011-01-1924
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
Journal Article

Spray Formation from Spark-Eroded and Laser-Drilled Injectors for DISI Engines with Gasoline and Alcohol Fuels

2014-10-13
2014-01-2745
One of the latest advancements in injector technology is laser drilling of the nozzle holes. In this context, the spray formation and atomisation characteristics of gasoline, ethanol and 1-butanol were investigated for a 7-hole spark eroded (SE) injector and its ‘direct replacement’ Laser-drilled (LD) injector using optical techniques. In the first step of the optical investigation, high-speed spray imaging was performed in a quiescent injection chamber with global illumination using diffused Laser light. The images were statistically analyzed to obtain spray penetration, spray tip velocity and spray ‘cone’ angles. Furthermore, droplet sizing was undertaken using Phase Doppler Anemometry (PDA). A single spray plume was isolated for this analysis and measurements were obtained across the plume at a fixed distance from the nozzle exit.
Technical Paper

The Emerging Market for Biodiesel and the Role of Fuel Additives

2007-07-23
2007-01-2033
With growing concern over greenhouse gases there is increasing emphasis on reducing CO2 emissions. Despite engine efficiency improvements plus increased dieselisation of the fleet, increasing vehicle numbers results in increasing CO2 emissions. To reverse this trend the fuel source must be changed to renewable fuels which are CO2 neutral. A common route towards this goal is to substitute diesel fuel with esterified seed oils, collectively known as Fatty Acid Methyl Esters. However a fundamental change to the fuel chemistry produces new challenges in ensuring compatibility between fuel and engine performance/durability. This paper discusses the global situation and shows how fuel additives can overcome the challenges presented by the use of biodiesel.
Technical Paper

Particulates Reduction in Diesel Engines Through the Combination of a Particulate Filter and Fuel Additive

1998-10-19
982654
Exhaust emissions legislation for diesel engines generally limits only the mass of emitted particulate matter. This limitation reflects the concerns and measurement technology at the time the legislation was drafted. However, evolving diesel particulate filter (DPF) systems offer the potential for reductions in the mass and more importantly, the number of particles emitted from diesel exhausts. Particulate filters require frequent cleaning or regeneration of accumulated soot, if the engine is to continue to operate satisfactorily. Exothermic reactions during regeneration can lead to severe thermal gradients in the filter system resulting in damage. Fuel additives have been evaluated to show significant reductions in light off temperature which allow frequent small regeneration events to occur, under mild operating conditions.
Technical Paper

Combining Unthrottled Operation with Internal EGR under Port and Central Direct Fuel Injection Conditions in a Single Cylinder SI Engine

2009-06-15
2009-01-1835
This experimental work was concerned with the combination of internal EGR with an early inlet valve closure strategy for improved part-load fuel economy. The experiments were performed in a new spark-ignited thermodynamic single cylinder research engine, equipped with a mechanical fully variable valvetrain on both the inlet and exhaust. During unthrottled operation at constant engine speed and load, increasing the mass of trapped residual allowed increased valve duration and lift to be used. In turn, this enabled further small improvements in gas exchange efficiency, thermal efficiency and hence indicated fuel consumption. Such effects were quantified under both port and homogeneous central direct fuel injection conditions. Shrouding of the inlet ports as a potential method to increase in-cylinder gas velocities has also been considered.
Technical Paper

Possible Influence of High Injection Pressure on Diesel Fuel Stability: A Review and Preliminary Study

2009-06-15
2009-01-1878
Recent developments in diesel engines and fuel injection equipment combined with the change to ULSD and bio-blends have resulted in increased reports regarding deposits within injectors and filters. A review of known fuel degradation mechanisms and other relevant chemistries suggests the effects of high pressure and high shear environments should be examined as the most probable causes of increasing deposit formation. Existing fuel quality tests do not correlate with reported fouling propensity. Analytical studies have shown that there are only subtle chemical changes for the materials within the standard diesel boiling range. The implications for further scientific study are discussed.
Technical Paper

A Study of the Parameters Ensuring Reliable Regeneration of a Sintered Metal Particulate Filter using a Fuel Borne Catalyst

2008-10-06
2008-01-2485
The operating cycle of many vehicles fitted with diesel particulate filters is such that soot accumulates within the filter and must periodically be oxidised. Work was carried out on a passenger car engine to elucidate how fuel borne catalyst (FBC) to soot ratio, oxygen mass flow rate, temperature and soot loading influence the oxidation rate of soot accumulated in a sintered metal filter (SMF). Results show that soot loading had a major influence; increased soot loading increased the oxidation rate. The other parameter had a smaller influence with increasing oxygen flow rate and FBC/soot ratio each increasing the oxidation rate.
Technical Paper

A Study of Alcohol Blended Fuels in an Unthrottled Single Cylinder Spark Ignition Engine

2010-04-12
2010-01-0618
This work involved study of the effects of alcohol blends on combustion, fuel economy and emissions in a single cylinder research engine equipped with a mechanical fully variable valvetrain on the inlet and variable valve timing on the exhaust. A number of splash blends of gasoline, iso-octane, ethanol and butanol were examined during port fuel injected early inlet valve closing operation, both with and without variable valve timing. Under low valve overlap conditions, it was apparent that the inlet valve durations/lifts required for full unthrottled operation were remarkably similar for the wide range of blends studied. However, with high valve overlap differences in burning velocities and internal EGR tolerances warranted changes in these valve settings.
Technical Paper

Combining Fuel Borne Catalyst, Catalytic Wash Coat and Diesel Particulate Filter

2001-03-05
2001-01-0902
In view of increasing concern over diesel particulates and tightening legislation to control their emission, much work has been done to develop diesel particulate filters (DPFs) and systems to allow them to work reliably. Although a filter will effectively trap solid particles, any material in the vapour phase, such as unburned hydrocarbons, may pass through the filter and subsequently condense. The use of a catalytic wash coat, either on the DPF itself or on a separate substrate, has been proposed to oxidise these hydrocarbons and thus reduce the total material emitted. The use of fuel borne catalysts to aid the regeneration of trapped material within the DPF is also well documented. Such catalyst will also catalyse the oxidation of any hydrocarbons bound up within the particulate. The oxidation of such hydrocarbon occurs at a lower temperature than that of carbon itself, thus allowing lower temperature regeneration of the DPF.
Technical Paper

Fuel Additive Performance Evaluation for Volume Production Application of a Diesel Particulate Filter

2001-03-05
2001-01-1286
Diesel particulate filter (DPF) technology is becoming increasingly established as a practical method for control of particulate emissions from diesel engines. In the year 2000, production vehicles with DPF systems, using metallic fuel additive to assist regeneration, became available in Europe. These early examples of first generation DPF technology are forerunners of more advanced systems likely to be needed by many light-duty vehicles to meet Euro IV emissions legislation scheduled for 2005. Aspects requiring attention in second generation DPF systems are a compromise between regeneration kinetics and ash accumulation. The DPF regeneration event is activated by fuel injection, either late in the combustion cycle (late injection), or after normal combustion (post injection), leading to increased fuel consumption. Therefore for optimum fuel economy, the duration of regeneration and/or the soot ignition temperature must be minimised.
Technical Paper

Retrofitting Urban Buses to Reduce PM and NO2

2004-06-08
2004-01-1939
In an attempt to improve ambient air quality, retrofit programmes have been encouraged; targeting reductions in PM emissions by means of diesel particulate filters (DPFs). However depending on the DPF design and operating conditions increased nitrogen dioxide (NO2) emissions have been observed, which is causing concern. Previous work showed that retrofitting a DPF system employing a fuel borne catalyst (FBC) to facilitate regeneration, reduced NO2 emissions. This paper outlines the investigation of a base metal coated DPF to enhance the reduction of NO2. Such a DPF system has been fitted to older technology buses and has demonstrated reliable field performance.
Technical Paper

Field Experience of DPF Systems Retrofitted to Vehicles with Low Duty Operating Cycles

2004-01-16
2004-28-0013
For many years now, epidemiologists have been highlighting the potential damage to health and the associated cost, caused by diesel particulate emissions. There is still debate concerning the crucial characteristics of these particles, however many authorities have concluded that it is their duty to legislate the reduction of such emissions. The most common approach is to legislate that all new vehicles should meet ever stricter emissions limits. This puts the onus and the cost on the engine manufacturers. The emissions limits in developing countries are inevitably less stringent than those in the developed world, this gives the indigenous manufacturers the opportunity to compete and develop. However, vehicle replacement intervals dictate that the effect of legislation controlling new vehicles takes many years to propagate throughout the existent vehicle fleet.
Technical Paper

Preliminary Results from a Six Vehicle, Heavy Duty Truck Trial, Using Additive Regenerated DPFs

2002-03-04
2002-01-0431
Impending legislation will make it almost inevitable that heavy-duty trucks will have to be fitted with some form of particulate removal after-treatment device. The challenge is to provide a system that is not only environmentally acceptable and cost effective but also durable enough to meet the demands of the trucking industry. Diesel particulate filters (DPF), in conjunction with fuel borne catalysts to facilitate regeneration, are now a recognised technology for meeting future passenger car emissions limits. Retrofitting of such systems to older technology vehicles, where specific environmental concerns exist, has demonstrated the possibility of applying this technology to the heavy-duty vehicle sector. Most of these retrofit applications tend to be to vehicles with a relatively low duty cycle. Whereas this type of duty cycle poses the greatest challenge to the successful regeneration of the filters it is not necessarily the most arduous test of the durability of the system.
Technical Paper

Experience of Fitting London Black Cabs with Fuel Borne Catalyst Assisted Diesel Particulate Filters - Part 2 Non-Regulated Emissions Measurements

2002-10-21
2002-01-2785
Forthcoming emissions legislation is driving the passenger car manufacturers towards the fitting of Diesel Particulate Filters (DPFs) as original equipment. In areas with a particular problem such as heavily congested city centres, retrospective legislation has also been introduced, for example in Hong Kong and Tokyo. Legislation mandating the retrofitting of DPFs obviously has an immediate effect on particulate emissions. Other authorities are thus investigating the efficacy of such measures. However with the increasing use of DPF technology concerns are now being raised over some currently unregulated emissions such as ultra fine particulate and NO2, although total particulate mass and oxides of nitrogen are regulated. To add to the data base for such issues a programme of work was run using London Black Cabs. Four cars were fitted with a DPF, an on-board dosing system to meter a fuel borne catalyst (FBC) into the fuel and a data logger to monitor the DPF performance.
Technical Paper

Experience of Fitting London Black Cabs with Fuel Borne Catalyst Assisted Diesel Particulate Filters - Part 1 Regulated Emissions and Regeneration Performance

2002-10-21
2002-01-2784
Forthcoming emissions legislation is driving the passenger car manufacturers towards the fitting of Diesel Particulate Filters (DPFs) as original equipment. However such initiatives are not retrospective and due to the replacement rate of the vehicle fleet, there is a time lag before the full benefit of the new measures are fully realised. To overcome this drawback, in areas with a particular problem such as heavily congested city centres, retrospective legislation has been introduced, for example in Hong Kong and Tokyo. Legislation mandating the retrofitting of DPFs obviously has an immediate effect on particulate emissions. Other authorities are thus investigating the efficacy of such measures. To add to the data base for such assessments Octel is running a demonstration programme using London Black Cabs. Four cars have been fitted with a DPF, an on-board dosing system to meter a fuel borne catalyst (FBC) into the fuel and a data logger to monitor the DPF performance.
Technical Paper

A Cost Effective Solution to Reduce Particulate Emissions

2003-01-18
2003-26-0006
Growing concern over the health effects of airborne particles and a desire to reduce the associated cost has resulted in legislation, regulations and other measures, in the industrialised world to severely restrict particulate emissions from diesel-fuelled automotive transport. Developing countries are also introducing initiatives to try and reduce emissions, an example is the legislation in India to replace diesel engines with gas fuelled engines in some major conurbations. Such measures are expensive, both in terms of replacing the engines of the vehicles and of implementing the required infrastructure. There is still also debate over whether such measures reduce the number of ultra-fine particulates. A well-proven alternative is to fit diesel engines with Diesel Particulate Filters (DPFs), either as original equipment or as a retrofit system. Regenerating DPFs has in the past been an obstacle to their widespread application.
X