Refine Your Search


Search Results

Technical Paper


This paper reviews the exhaust emissions from direct injection diesel engines in the initial period following startup. The tests were undertake in “cold start” mode (temperature of cooling water and lube oil equal ambient temperature) and “warm start” modes (after getting equilibrium state). Both results were compared. Exhaust emissions in the period of run from cold start to warmed-up is very important to satisfy present day standards worldwide.
Journal Article

Low Ambient Temperature Cold Start Emissions of Gaseous and Solid Pollutants from Euro 5 Vehicles featuring Direct and Indirect Injection Spark-Ignition Engines

Spark ignition (SI) engines are susceptible to excess emissions at low ambient temperatures. Direct injection leads to the formation of particulate matter (PM), and direct injection spark ignition (DISI) engines should show greater PM emissions at low ambient temperatures. This study compares excess emissions of gaseous and solid pollutants following cold start at a low ambient temperature and the standard test temperature. Euro 5 passenger cars were tested on a chassis dynamometer within BOSMAL's climate-controlled test chamber, according to European Union legislation (−7°C over the urban driving cycle (UDC), and at 25°C). Two vehicles were also tested over the entire New European Driving Cycle (NEDC). Emissions of regulated compounds and carbon dioxide were analyzed; particulate emissions (both mass and number) were also measured, all using standard procedures.
Technical Paper

The Effect of Various Petrol-Ethanol Blends on Exhaust Emissions and Fuel Consumption of an Unmodified Light-Duty SI Vehicle

Due to limited fossil fuel resources and a need to reduce anthropogenic CO₂ emissions, biofuel usage is increasing in multiple markets. Ethanol produced from the fermentation of biomass has been of interest as a potential partial replacement for petroleum for some time; for spark-ignition engines, bioethanol is the alternative fuel which is currently of greatest interest. At present, the international market for ethanol fuel consists of E85 fuel (with 85 percent ethanol content), as well as lower concentrations of ethanol in petrol for use in standard vehicles (E5, E10). The impact of different petrol-ethanol blends on exhaust emissions from unmodified vehicles remains under investigation. The potential for reduced exhaust emissions, improved security of fuel supply and more sustainable fuel production makes work on the production and usage of ethanol and its blends an increasingly important research topic.
Journal Article

An Investigation into Cold Start Emissions from Compression Ignition Engines using EU Legislative Emissions Test Procedures

Diesel (compression ignition, CI) engines are increasingly exploited in light-duty vehicles, due to their high efficiency and favorable characteristics. Limited work has been performed on CI cold-start emissions at low temperatures. This paper presents a discussion and a brief literature review of diesel cold-start emissions phenomena at low ambient temperatures and the results of tests performed on two European light-duty vehicles with Euro 5 CI engines. The tests were performed on a chassis dynamometer within an advanced climate-controlled test laboratory at BOSMAL Automotive Research and Development Institute, Poland to determine the deterioration in emission of gaseous (HC, CO, NOx, CO2) and solid (PM, PN) pollutants following the EU legislative test procedure (testing at 20°C to 30°C and at -7°C, performed over the NEDC). The tests revealed appreciable increases in emissions of regulated pollutants.
Technical Paper

Analysis of Emission Factors in RDE Tests As Well as in NEDC and WLTC Chassis Dynamometer Tests

This paper presents a study of passenger cars in terms of emissions measurements in tests conducted under real driving conditions (RDE - Real Driving Emissions) by means of PEMS (Portable Emission Measurement System) equipment. A special feature of the RDE tests presented in this paper is that they were performed under Polish conditions and the specified parameters may differ from those in most other European Union countries. Emission correction coefficients have been defined, based on the test results, equal to the increase (or decrease) of driving emissions during the laboratory (‘chassis dyno’) test or during normal usage in relation to the EU emission standards (emission class) of the vehicle.
Technical Paper

A Comparison of Gaseous Emissions from a Hybrid Vehicle and a Non-Hybrid Vehicle under Real Driving Conditions

In this study, two vehicles were tested under real driving conditions with gaseous exhaust emissions measured using a portable emissions measurement system (PEMS). One of the vehicles featured a hybrid powertrain with a spark ignition internal combustion engine, while the other vehicle featured a non-hybrid (conventional) spark ignition internal combustion engine. Aside from differences in the powertrain, the two test vehicles were of very similar size, weight and aerodynamic profile, meaning that the power demand for a given driving trace was very similar for both vehicles. The test route covered urban conditions (but did include driving on a road with speed limit 90 km/h). The approximate test route distance was 12 km and the average speed was very close to 40 km/h.
Technical Paper

Exhaust Emissions of Gaseous and Solid Pollutants Measured over the NEDC, FTP-75 and WLTC Chassis Dynamometer Driving Cycles

Concern over greenhouse gas (GHG) emissions and air quality has made exhaust emissions from passenger cars a topic interest at an international level. This situation has led to the re-evaluation of testing procedures in order to produce more “representative” results. Laboratory procedures for testing exhaust emissions are built around a driving cycle. Cycles may be developed in one context but later used in another: for example, the New European Driving Cycle (NEDC) was not developed to measure fuel consumption, but has ended up being used to that end. The new Worldwide harmonized Light vehicles Test cycle (the WLTC) will sooner or later be used for measuring regulated exhaust emissions. Legal limits for emissions of regulated pollutants are inherently linked to the test conditions (and therefore to the driving cycle); inter-cycle correlations for regulated pollutants are an important research direction.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions

In the year 2005, the EURO IV fuel specification came into effect and the requirements for diesel fuel properties have become even more stringent. In this way, the potential of diesel fuel for emissions reduction has already been to a large extent exploited and the most emissions-sensitive fuel parameters can now be changed in a narrow range only. The shortfall in NOx and PM emissions control in diesel engines is, however, so great that more drastic fuel changes will be needed. One of the most promising fuel modifications for exhaust emissions control seems to be oxygenated additives. The objective of the study described in this paper was to analyze under transient conditions the influence of synthetic oxygenated fuel additives on exhaust emissions. The tests were conducted on a Euro IV passenger car. Six oxygenated additives were tested over the New European Driving Cycle (NEDC).
Technical Paper

A Study of RME-Based Biodiesel Blend Influence on Performance, Reliability and Emissions from Modern Light-Duty Diesel Engines

The paper evaluates the possibility of using different biodiesel blends (mixture of diesel fuel and Fatty Acid Methyl Esters) in modern Euro 4/ Euro 5 direct-injection, common-rail, turbocharged, light-duty diesel engines. The influence of different quantity of RME in biodiesel blends (B5, B20, B30) on the emission measurement of gaseous pollutants, such as: carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), carbon dioxide (CO2) and particulate matter (PM) for light-duty-vehicle (LDV) during NEDC cycle on the chassis dynamometer as well as engine performance and reliability in engine dyno tests were analysed. All test results presented have been to standard diesel fuel. The measurement and analysis illustrate the capability of modern light-duty European diesel engines fueled with low and medium percentages of RME in biodiesel fuel with few problems.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions - Part 2

The paper presents the test results of the influence of maleate oxygenated additives to diesel fuel on exhaust emissions. Following the previous tests of glycol ethers (SAE Paper 2007-01-0069), the authors decided to use maleates as oxygenates to obtain greater changes in PM/NOx trade-off than the changes obtained as a result of the use of glycol ethers. It was found that in the NEDC maleates at the same concentration as in the case of glycol ethers ensure more favourable changes of PM/NOx trade-off and, as a matter of fact, caused greater reduction in PM emissions without the growth of NOx emissions, however, at the cost of CO and HC emissions. The tests performed in the FTP-75 confirmed a significantly weaker influence of maleates, both positive (PM) and negative (CO, HC) than in the NEDC. They did not find in both cycles any influence of maleates at the tested concentration upon fuel consumption and CO2 emissions.
Technical Paper

A Comparison of Carbon Dioxide Exhaust Emissions and Fuel Consumption for Vehicles Tested over the NEDC, FTP-75 and WLTC Chassis Dynamometer Test Cycles

Due to concern over emissions of greenhouse gases (GHG; particularly carbon dioxide - CO2), energy consumption and sustainability, many jurisdictions now regulate fuel consumption, fuel economy or exhaust emissions of CO2. Testing is carried out under laboratory conditions according to local or regional procedures. However, a harmonized global test procedure with its own test cycle has been created: the World Harmonized Light Vehicles Test Cycle - WLTC. In this paper, the WLTC is compared to the New European Driving Cycle (NEDC) and the FTP-75 cycle used in the USA. A series of emissions tests were conducted at BOSMAL on a chassis dynamometer in a Euro 6-complaint test facility to determine the impact of the test cycle on CO2 emissions and fuel consumption. While there are multiple differences in the test cycles in terms of dynamicity, duration, distance covered, mean/maximum speed, etc, differences in results obtained over the three test cycles were reasonably limited.
Technical Paper

Chassis Dynamometer Testing of Ammonia Emissions from Light-Duty SI Vehicles in the Context of Emissions of Reactive Nitrogen Compounds

Ammonia is a reactive nitrogen compound (RNC - nitrogen-based gaseous molecules with multiple adverse impacts on human health and the biosphere). A three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. This study presents a brief literature review, and presents experimental data on ammonia emissions from seven Euro 5 passenger cars, using different gasoline fuels and a CNG fuel. All vehicles were tested on a chassis dynamometer over the New European Driving Cycle. For six of the vehicles, ammonia was quantified directly at tailpipe (using two different analyzers); emissions from one vehicle were subjected to Fourier Transform Infra-Red (FTIR) analysis. Emissions of ammonia from these vehicles were generally low in comparison to other chassis dynamometer studies, perhaps attributable to the favorable laboratory test conditions and the age of the vehicles.
Technical Paper

Euro III / Euro IV Emissions - A Study of Cold Start and Warm Up Phases with a SI (Spark Ignition) Engine

The European driving cycle, deleting the first 40 seconds of idle after the start up phase, and the US FTP 75 cycle are compared in this paper. The paper presents an analysis of emission tests for CO, HC and NOx measured during tests performed on a chassis dynamometer under laboratory conditions. The tests are reviewed and the results discussed. The objective of the study was to determine the influence of the test cycle on the measured emission of CO, HC and NOx, and the changes of fuel consumption at the initial phase of engine operation. Differences in catalyst warm up rates when running NEDC, ECE + EUDC and FTP 75 cycles are demonstrated. Methods of reduction in these harmful emissions and the results of tests with new technologies targeted at the reduction of CO, HC and NOx under cold start are also discussed.
Technical Paper

An analysis of CO2 emissions and fuel consumption from new automotve vehicles in aspects of future regulations

Carbon dioxide (CO2) is one of the basic greenhouse gases and according to some opinions their influence upon warming the earth climate is significant. Acceptance of this prognosis has lead to worldwide legislative limitation covering all CO2 emitting engines. The paper reviews the relationship between CO2 emissions and fuel consumption in a range of automobiles (with SI and CI engines) presented for type approval over last four years (1996-1999). The paper presents an analysis of the results of an examination of the CO2 emission and the fuel consumption of more like 150 automotive vehicles (M1 and N1 categories), European, Japanese/Korean manufacturer and the US. The procedures used in the examination for approval in the presented scope have been described and several results of these examinations conducted in Poland in accordance with the requirements of the Regulations No. 101 ECE UNO (directive 93/116 EC) have been evaluated.
Journal Article

Performance of Particle Oxidation Catalyst and Particle Formation Studies with Sulphur Containing Fuels

The aim of this paper is to analyze the quantitative impact of fuel sulfur content on particulate oxidation catalyst (POC) functionality, focusing on soot emission reduction and the ability to regenerate. Studies were conducted on fuels containing three different levels of sulfur, covering the range of 6 to 340 parts per million, for a light-duty application. The data presented in this paper provide further insights into the specific issues associated with usage of a POC with fuels of higher sulfur content. A 48-hour loading phase was performed for each fuel, during which filter smoke number, temperature and back-pressure were all observed to vary depending on the fuel sulfur level. The Fuel Sulfur Content (FSC) affected also soot particle size distributions (particle number and size) so that with FSC 6 ppm the soot particle concentration was lower than with FSC 65 and 340, both upstream and downstream of the POC.
Journal Article

A Comparison of Ammonia Emission Factors from Light-Duty Vehicles Operating on Gasoline, Liquefied Petroleum Gas (LPG) and Compressed Natural Gas (CNG)

Vehicular ammonia emissions are currently unregulated, even though ammonia is harmful for a variety of reasons, and the gas is classed as toxic. Ammonia emissions represent a serious threat to air quality, particularly in urban settings; an ammonia emissions limit may be introduced in future legislation. Production of ammonia within the cylinder has long been known to be very limited. However, having reached its light-off temperature, a three-way catalyst can produce substantial quantities of ammonia through various reaction pathways. Production of ammonia is symptomatic of overly reducing conditions within the three-way catalyst (TWC), and depends somewhat upon the particular precious metals used. Emission is markedly higher during periods where demand for engine power is higher, when the engine will be operating under open-loop conditions.
Technical Paper

Effects of Fuel Properties on Exhaust Emissions from the Latest Light-Duty DI Diesel Engine

The great reduction in future diesel engine emission limits, especially PM and NOx, forces one to develop means to comply with stringent legislation. Environmentally friendly fuels are regarded as a very effective means to decrease emissions. Although the emission reduction is less than could be achieved by the most modern engine technology or alternative fuels, the immediate net effect of reformulated diesel fuel on emissions is significant, as it takes place over the whole vehicle population. The experimental results presented in this paper were obtained within a research program investigating the effect of different fuels upon emissions from compression-ignition automotive engines. The research were carried out in the laboratories of the BOSMAL Automotive R & D Centre in co-operation to Institute of Internal Combustion Engines at Poznan University of Technology. The partial results of this research program were presented in SAE Paper 2002-01-2219.
Technical Paper

Regulated Emissions, Unregulated Emissions and Fuel Consumption of Two Vehicles Tested on Various Petrol-Ethanol Blends

Ethanol has a long history as an automotive fuel and is currently used in various blends and formats as a fuel for spark ignition engines in many areas of the world. The addition of ethanol to petrol has been shown to reduce certain types of emissions, but increase others. This paper presents the results of a detailed experimental program carried out under standard laboratory conditions to determine the influence of different quantities of petrol-ethanol blends (E5, E10, E25, E50 and E85) on the emission of regulated and unregulated gaseous pollutants and particulate matter. The ethanol-petrol blends were laboratory tested in two European passenger cars on a chassis dynamometer over the New European Driving Cycle, using a constant volume sampler and analyzers for quantification of both regulated and unregulated emissions.
Technical Paper

The Influence of Synthetic Oxygenates on Euro IV Diesel Passenger Car Exhaust Emissions - Part 3

The paper presents the test results relating to the influence of carbonate oxygenated additives to diesel fuel on exhaust emissions. Following the previous tests of glycol ethers (SAE Paper 2007-01-0069) and maleates (SAE Paper 2008-01-1813), the authors decided to use carbonates to obtain an even greater reduction in PM emissions. The significant effectiveness of carbonates on PM emission reduction was confirmed in tests performed by the authors. Diethyl carbonate was the most effective oxygenated compound with regard to PM emission reduction among all the 11 oxygenates which have been tested so far. Moreover, it is important to note that diethyl carbonate caused only a small increase in NOx emissions, thus it allowed for an essential improvement in the PM/NOx trade-off. A significant increase in the CO and HC emissions was, however, a negative effect of the use of carbonates.
Technical Paper

Exhaust Emission from Passenger Cars During Engine Cold Start and Warm-Up

An increased of carbon monoxide and hydrocarbons emissions from gasoline engines in ambient temperatures at or below 0°C is a key issue, not only in Scandinavia or northern parts of the USA and Canada, but also in countries of Central and Eastern Europe. It is typical of Poland and neighbouring countries that for six to seven months (from October to April) air temperature fails to about 0°C at night, while in winter months this temperature often fails below -10 to even -20°C. Due to this, in these countries the cars are started in the morning when the engine and all other parts of the car are considerably cool. This paper presents a special climatic conditions in view of their effect on the actual exhaust emission from a car with SI engine and results of emission tests for such gaseous pollutants as CO, HC and NOx, achieved during tests performed on a chassis dynamometer according to ECE and FTP 75 cycles.