Refine Your Search


Search Results

Technical Paper

The Relative Sensitivity of Size and Operational Conditions on Basic Tire Maneuvering Properties

Basic performance properties of tires significantly influence the lateral/directional (steering) stability and handling of highway vehicles. These properties include cornering stiffness and peak and slide coefficients of friction. This paper considers some detailed tire machine measurements of lateral tire performance. A large database of tire properties for a wide range of highway vehicles is also analyzed. A regression analysis approach is used to define the sensitivity of various size and operational (speed, pressure and load) characteristics on tire behavior. The paper discusses the manner in which these properties vary with tire size and operational conditions, and the effect of the properties on vehicle stability and handling.
Technical Paper

Combined Terrain, Vehicle, and Digital Human Models Used for Human Operator Performance Analysis

A combined biodynamic and vehicle model is used to assess the vibration and performance of a human operator performing driving and other tasks. The other tasks include reaching, pointing and tracking by the driver and/or passenger. This analysis requires the coordinated use of separate and mature software programs for anthropometrics, vehicle dynamics, biodynamics, and systems analysis. The total package is called AVB-DYN, an acronym for Anthropometrics, Vehicle, and Bio-DYNamics. The objectives and architecture are discussed, and then a preliminary version of this package is demonstrated in an example where a HMMWV (High Mobility Multipurpose Wheeled Vehicle) operator is performing a driving task.
Technical Paper

A Biodynamic Model for the Assessment of Human Operator Performance under Vibration Environment

A combined biodynamic and vehicle model is used to assess the vibration and performance of a human operator performing driving and other tasks. The other tasks include reaching, pointing and tracking by the driver and/or passenger. This analysis requires the coordinated use of separate and mature software programs for anthropometrics, vehicle dynamics, biodynamics, and systems analysis. The total package is called AVB-DYN, an acronym for Anthropometrics, Vehicle and Bio-DYNamics. The biodynamic component of AVB-DYN is described, and then compared with an experiment that studied human operator in-vehicle reaching performance using the U.S. Army TACOM Ride Motion Simulator.
Technical Paper

Computer Simulation Analysis of Light Vehicle Lateral/Directional Dynamic Stability

Dynamic stability is influenced by vehicle and tire characteristics and operating conditions, including speed and control inputs. Under limit performance operating conditions, maneuvering can force a vehicle into oversteer and high sideslip. The high sideslip results in limit cornering conditions, which might proceed to spinout, or result in tip-up and rollover. Oversteer and spinout result from rear axle tire side force saturation. Tip-up and rollover occur when tire side forces are sufficient to induce lateral acceleration that will overcome the stabilizing moment of vehicle weight. With the use of computer simulation and generic vehicle designs, this paper explores the vehicle and tire characteristics and maneuvering conditions that lead to loss of directional control and potential tip-up and rollover.
Technical Paper

Motion Cueing Evaluation of Off-Road Heavy Vehicle Handling

Motion cueing algorithms can improve the perceived realism of a driving simulator, however, data on the effects on driver performance and simulator sickness remain scarce. Two novel motion cueing algorithms varying in concept and complexity were developed for a limited maneuvering workspace, hexapod/Stuart type motion platform. The RideCue algorithm uses a simple swing motion concept while OverTilt Track algorithm uses optimal pre-positioning to account for maneuver characteristics for coordinating tilt adjustments. An experiment was conducted on the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Ride Motion Simulator (RMS) platform comparing the two novel motion cueing algorithms to a pre-existing algorithm and a no-motion condition.
Technical Paper

The Effect of Tire Characteristics on Vehicle Handling and Stability

Handling and stability problems are typically revealed under limit performance maneuvering conditions where tires are pushed to high slip angles under high normal loading conditions. This paper reviews vehicle dynamics handling and stability models relative to tire characteristics and examines tire testing data obtained under normal and extreme maneuvering conditions. Tire data is normalized according to design characteristics in order to reveal basic maneuvering behavior that is relatively independent of size and construction. Computer simulation analysis is used to demonstrate the influence of tire characteristics on handling and stability.
Technical Paper

Vehicle and Tire Modeling for DynamicAnalysis and Real-Time Simulation

This paper reviews the development and application of a computer simulation for simulating ground vehicle dynamics including steady state tire behavior. The models have been developed over the last decade, and include treatment of sprung and unsprung masses, suspension characteristics and composite road plane tire forces. The models have been applied to single unit passenger cars, trucks and buses, and articulated tractor/trailer vehicles. The vehicle model uses composite parameters that are relatively easy to measure. The tire model responds to normal load, camber angle and composite tire patch slip, and its longitudinal and lateral forces interact with an equivalent friction ellipse formulation. The tire model can represent behavior on both paved and off-road surfaces. Tire model parameters can be automatically identified given tire force and moment test data.
Technical Paper

Analysis and Computer Simulation of Driver/Vehicle Interaction

This paper presents an analysis of driver/vehicle performance over a range of maneuvering conditions including accident avoidance scenarios involving vehicle limit performance handling. Driver behavior is considered in the same dynamic analysis terms as vehicle response in order to give appropriate closed-loop measures of total system maneuvering capability and handling stability. A driver control structure is developed along with closed-loop system stability constraints on model parameters over a wide range of vehicle maneuvering conditions. Example simulation runs are presented for several accident avoidance scenarios.
Technical Paper

Tire Modeling for Off-Road Vehicle Simulation

A tire/terrain interaction model is presented to support the dynamic simulation of off-road ground vehicle. The model adopts a semi-empirical approach that is based on curve fits of soil data combined with soil mechanics theories to capture soil compaction, soil shear deformation, and soil passive failure that associate with off-road driving. The resulting model allows the computation of the tire forces caused by terrain deformation in longitudinal and lateral direction. This model has been compared with experimental data and shown reasonable prediction of the tire/terrain interaction.
Technical Paper

Tire Modeling Requirements for Vehicle Dynamics Simulation

The physical forces applied to vehicle inertial dynamics derive primarily from the tires. These forces have a profound effect on handling. Tire force modeling therefore provides a critical foundation for overall vehicle dynamics simulation. This paper will describe the role tire characteristics play in handling, and will discuss modeling requirements for appropriately simulating these effects. Tire input and output variables will be considered in terms of their relationship to vehicle handling. General computational requirements will be discussed. An example tire model will be described that allows for efficient computational procedures and provides responses over the full range of vehicle maneuvering conditions.
Technical Paper

Low Cost Driving Simulation for Research, Training and Screening Applications

Interactive driving simulation is attractive for a variety of applications, including screening, training and licensing, due to considerations of safety, control and repeatability. However, widespread dissemination of these applications will require modest cost simulator systems. Low cost simulation is possible given the application of PC level technology, which is capable of providing reasonable fidelity in visual, auditory and control feel cuing. This paper describes a PC based simulation with high fidelity vehicle dynamics, which provides an easily programmable visual data base and performance measurement system, and good fidelity auditory and steering torque feel cuing. This simulation has been used in a variety of applications including screening truck drivers for the effects of fatigue, research on real time monitoring for driver drowsiness and measurement of the interference effect of in-vehicle IVHS tasks on driving performance.
Technical Paper

Driver/Vehicle Modeling and Simulation

This paper describes the driver/vehicle modeling aspects of a computer simulation that can respond to highway engineering descriptions of roadways. The driver model interacts with a complete vehicle dynamics model that has been described previously. The roadway path is described in terms of horizontal and vertical curvature and cross slopes of lanes, shoulders, side slopes and ditches. Terrain queries are made by the vehicle dynamics to locate tires on the roadway cross-section, and to define vehicle path and road curvature at some distance down the road. The driver model controls steering to maintain lateral lane position. Speed is maintained at a speed limit on tangents, and decreased as needed to maintain safe lateral acceleration. Because the bandwidth of longitudinal (speed) control is much lower than lateral/directional (steering) control, the driver model looks further ahead for speed control than for steering.
Technical Paper

Vehicle Stability Considerations with Automatic and Four Wheel Steering Systems

Automatic and four wheel steering control laws are often developed from the performance point of view to optimize rapid response. Under linear tire operating conditions (i.e., maneuvering at less than .5g's) both performance and safety conditions can be simultaneously met. Under severe operating conditions, such as might be encountered during crash avoidance maneuvering, tire characteristics can change dramatically and induce directional dynamic instability and spinout. The challenge in automatic and four wheel steering system design is to achieve a compromise between performance and safety. This paper will describe analyses carried out with a validated vehicle dynamics computer simulation that shed some light on the vehicle and control characteristics that influence tradeoffs between performance and safety. The computer simulation has been validated against field test data from twelve vehicles including passenger cars, vans, pickup trucks and utility vehicles.
Technical Paper

Stability and Performance Analysis of Automobile Driver Steering Control

This paper reviews and expands previously published driver steering control models. The driver model is structured to control vehicle heading angle and lane position. Field test data are used to validate model structure. The closed-loop stability of the driver/vehicle system is analyzed using a two degree of freedom vehicle dynamics approximation. This analysis is used to develop constraints among the various driver model parameters and their dependence on vehicle characteristics. Driver/vehicle model approximations are also used to explore the effects of driver behavior on steering performance.
Technical Paper

Physiological and Response Measurements in Driving Tasks

Driver response and performance can be quantified by observing the stimulus-response environment. Yet the driver's inherent adaptability allows him to have seemingly adequate performance in potentially hazardous driving situations even though he may be operating near the acceptable safety limits. Physiological measures of the driver's internal state can provide further quantification of his performance level and can give a measure of his workload or safety performance margin. Measures of driver physiological and control responses have been made under gust disturbance conditions with the subject's car operating at various speeds. The experimental techniques and data are described, and correlations between the situational parameters and driver stress and control response are shown.
Technical Paper

The Effect of Adverse Visibility on Driver Steering Performance in an Automobile Simulator

The driver's ability to control the lateral position of an automobile is dependent on his perception of the command path (roadway) to be followed. This perception is affected by both the configuration of road markings and other features, and the visibility of these elements. As visibility decreases, the driver's preview of the commanded path is reduced. Theory indicates that driver performance should degrade with reduced preview and configurational parameters which characterize the intermittent nature of delineation (e.g., dashed lines). This paper describes a simulation experiment in which driver behavior and driver/vehicle system performance were measured over a range of visibility and configuration parameter variations. Driver dynamic response and noise (remnant) were reliably affected by variations in visibility and configuration. These effects were also reflected in system performance measures such as lane deviations.
Technical Paper

Driving Simulation — Requirements, Mechanization and Application

This paper discusses recent developments and application of driving simulators. Simulation of driving via films has been used for a number of years as a driver education tool. More recently, interactive simulators have been developed for research and training applications. Improvements are accelerating due to a combination of ongoing research needs, and general state of the art advances in hardware and software technology. Modern simulator requirements are reviewed from the point of view of both driver characteristics (vision, audition, proprioception, vestibular motion sensation) and task demands (e.g., steering and speed control, risk perception, decision making, general workload level). A variety of simulator applications are summarized, including comparison with subsequent field tests. These applications include studies involving drunk driving and risk taking, reduced visibility and delineation, and signing.
Technical Paper

A Downhill Grade Severity Rating System

A Grade Severity Rating System (GSRS) was developed as a means for reducing the incidence and severity of truck accidents on downgrades. The ultimate result is a roadside sign at the top of each hill. The sign is tailored to the individual hill and gives a recommended maximum speed (to be held constant for the entire grade descent) for each of several truck weight ranges. This concept represents a major step forward in terms of grade descent safety because it tells the driver what to do directly, rather than giving him information which still requires evaluation under different loading conditions.
Technical Paper

The Use of In-Vehicle Detectors to Reduce Impaired Driving Trips

For almost twenty years, researchers have attempted to develop an in-vehicle system which would prevent an impaired driver from operating his or her motor vehicle. These systems have ranged from breath testers to psychomotor tests, and have prevented operation of the vehicle by such methods as preventing the vehicle from starting or alerting drivers, and the police through alarm systems. This paper discusses the background leading to an in-vehicle system which was built and tested. We also discuss the system and its components, and present the results of two tests involving convicted drunk drivers. While the primary purpose of this project was to determine the feasibility of this type of system, the results of the two tests show promise for the reduction of impaired driving trips.
Technical Paper

Test Methods and Computer Modeling for the Analysis of Ground Vehicle Handling

This paper presents test methods and modeling procedures for identifying the directional handling characteristics of vehicles over the full maneuvering range from straight running to limit cornering and/or braking. The test procedures are designed to validate steady-state and dynamic response performance. The model parameters are derived from simple static tests of vehicle properties and tire parameters identified from tire machine tests. Current steady-state field test procedures validate the model response under cornering only conditions. Model analysis then extrapolates vehicle response under combined cornering and braking conditions. Some discussion is devoted to potential braking in a turn transient testing for more complete model validation.