Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Quantification of Local Ozone Production Attributable to Automobile Hydrocarbon Emissions

When automobile hydrocarbons are exhausted into the atmosphere in the presence of NOx and sunlight, ground-level ozone is formed. While researchers have used Maximum Incremental Reactivity (MIR) factors to estimate ozone production, this procedure often overestimates Local Ozone Production (LOP) because it does not consider local atmospheric conditions. In this paper, an enhanced MIR methodology for estimating actual LOP attributable to a vehicle in a particular ozone problem area is presented. In addition to using tabulated MIR factors, the procedure also uses local hydrocarbon reaction terms and a relative mechanistic reactivity term that account for local atmospheric conditions. Through this approach, the effects of hydrocarbon reaction rates, hydrocarbon residence times, and prevailing HC/NOx ratio are accounted for. The procedure is intended to enable automotive engineers to more realistically estimate actual local ozone production resulting from hydrocarbon emissions.
Technical Paper

Development of a Two-Zone HCCI Combustion Model Accounting for Boundary Layer Effects

The Homogeneous Charge Compression Ignition (HCCI) combustion concept is currently under widespread investigation due to its potential to increase thermal efficiency while greatly decreasing harmful exhaust pollutants. Simulation tools have been developed to explore the implications of initial mixture thermodynamic state on engine performance and emissions. In most cases these modeling efforts have coupled a detailed fuel chemistry mechanism with empirical descriptions of the in-cylinder heat transfer processes. The primary objective of this paper is to present a fundamentally based boundary layer heat transfer model. The two-zone combustion model couples an adiabatic core zone with a boundary layer heat transfer model. The model predicts film coefficient, with approximately the same universal shape and magnitudes as an existing global model.
Technical Paper

A Prototype Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers

A prototype chromel-alumel overlapping thin-film thermocouple (TFTC) has been developed for transient heat transfer measurements in ceramic-coated combustion chambers. The TFTC has been evaluated using various metallurgical techniques such as scanning electron microscopy, energy dispersive x-ray detection, and Auger electron spectroscopy. The sensor was calibrated against a standard thermocouple in ice, boiling water, and a furnace at 1000°C. The microstructural and chemical analysis of the thin-films showed the alumel film composition was very similar to the bulk material, while the chromel film varied slightly. An initial set of ceramic plug surface temperatures was taken while motoring and firing the engine at 1900 rpm to verify thermocouple operation. The data shows a 613 K mean temperature and a 55 K swing for the ceramic surface compared with a 493 K mean temperature and a 20 K swing for the metal surface at the same location.
Technical Paper

Evaluation of Alternative Thermocouple Designs for Transient Heat Transfer Measurements in Metal and Ceramic Engines

Finite element models of various fast-response thermocouple designs have been developed. Due to the small differences in thermal properties between thermoelements and metal engine components, standard co-axial thermocouples can measure transient temperatures of metal components within an accuracy of 98%. However, these relatively small errors in total temperature measurement translate into as high as 30% errors in indicated peak-to-peak-temperature swings for iron surfaces. The transient swing errors result in up to 30% errors in peak heat flux rates to iron surfaces. These peak heat flux errors can be substantially larger if coaxial thermocouples are used for heat flux measurements in aluminum or ceramic surfaces. Increasing the thin film thickness is a compromise solution to reduce the discrepancy in peak heat flux measured with coaxial designs in metal engines. An alternative overlapping thin film thermocouple design has also been evaluated.
Technical Paper

Transient Heat Conduction in Low-Heat-Rejection Engine Combustion Chambers

Predicting the effects of transient heat conduction in low-heat-rejection engine components have been analyzed by applying instantaneous boundary conditions throughout a diesel engine thermodynamic cycle. This paper describes the advantages and disadvantages of one-dimensional finite difference and two-dimensional finite element methods by analyzing simple and complicated geometries like diesel bowl-in pistons. Also the performance characteristics of plasma sprayed zirconia, partially stabilized zirconia, and a monolithic reaction bonded silicon nitride ceramic materials are discussed and compared. Finite element studies have indicated that the steep temperature gradients associated with cyclic temperature swings in excess of 400 K may contribute to the failure of ceramic coatings near the corner joining the surface of the piston and the surface of the bowl for bowl-in pistons.
Technical Paper

The Effects of Ceramic Coatings on Diesel Engine Performance and Exhaust Emissions

An experimental investigation of the effects of ceramic coatings on diesel engine performance and exhaust emissions was conducted. Tests were carried out over a range of engine speeds at full load for a standard metal piston and two pistons insulated with 0.5 mm and 1.0 mm thick ceramic coatings. The thinner (0.5 mm) ceramic coating resulted in improved performance over the baseline engine, with the gains being especially pronounced with decreasing engine speed. At 1000 rpm, the 0.5 mm ceramic coated piston produced 10% higher thermal efficiency than the metal piston. In contrast, the relatively thicker coating (1 mm), resulted in as much as 6% lower thermal efficiency compared to baseline. On the other hand, the insulated engines consistently presented an attractive picture in terms of their emissions characteristics. Due to the more complete combustion in the insulated configurations, exhaust CO levels were between 30% and 60% lower than baseline levels.
Technical Paper

A Global Model for Steady State and Transient S.I. Engine Heat Transfer Studies

A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The success of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper.
Technical Paper

The Effect of Thin Ceramic Coatings on Spark-Ignition Engine Performance

An experimental study of the effects of thin ceramic thermal barrier coatings on the performance of a spark-ignited gasoline engine was conducted. A modified 2.5 liter GM engine with ceramic-coated pistons, liners, head, valves and ports was used. Experimental results obtained from the ceramic engine were compared with baseline metal engine data. It was shown that at low-speed part-load conditions encountered in typical driving cycles the ceramic engine could achieve up to 18% higher brake power and up to 10% lower specific fuel consumption. At wide open throttle conditions, the two engines exhibited similar characteristics, except at high speeds where the metal engine showed better performance at the expense of inferior fuel economy. The ceramic coating did not produce any observable knock in the engine and showed no significant wear at the conclusion of the testing phase.