Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Turbulence Intensity Calculation from Cylinder Pressure Data in a High Degree of Freedom Spark-Ignition Engine

2010-04-12
2010-01-0175
The number of control actuators available on spark-ignition engines is rapidly increasing to meet demand for improved fuel economy and reduced exhaust emissions. The added complexity greatly complicates control strategy development because there can be a wide range of potential actuator settings at each engine operating condition, and map-based actuator calibration becomes challenging as the number of control degrees of freedom expand significantly. Many engine actuators, such as variable valve actuation and flow control valves, directly influence in-cylinder combustion through changes in gas exchange, mixture preparation, and charge motion. The addition of these types of actuators makes it difficult to predict the influences of individual actuator positioning on in-cylinder combustion without substantial experimental complexity.
Technical Paper

Turbocharger Matching for a 4-Cylinder Gasoline HCCI Engine Using a 1D Engine Simulation

2010-10-25
2010-01-2143
Naturally aspirated HCCI operation is typically limited to medium load operation (∼ 5 bar net IMEP) by excessive pressure rise rate. Boosting can provide the means to extend the HCCI range to higher loads. Recently, it has been shown that HCCI can achieve loads of up to 16.3 bar of gross IMEP by boosting the intake pressure to more than 3 bar, using externally driven compressors. However, investigating HCCI performance over the entire speed-load range with real turbocharger systems still remains an open topic for research. A 1 - D simulation of a 4 - cylinder 2.0 liter engine model operated in HCCI mode was used to match it with off-the-shelf turbocharger systems. The engine and turbocharger system was simulated to identify maximum load limits over a range of engine speeds. Low exhaust enthalpy due to the low temperatures that are characteristic of HCCI combustion caused increased back-pressure and high pumping losses and demanded the use of a small and more efficient turbocharger.
Journal Article

An Evaluation of Residual Gas Fraction Measurement Techniques in a High Degree of Freedom Spark Ignition Engine

2008-04-14
2008-01-0094
Stringent fuel economy and emissions regulations have driven development of new mixture preparation technologies and increased spark-ignition engine complexity. Additional degrees of freedom, brought about by devices such as cam phasers and charge motion control valves, enable greater range and flexibility in engine control. This permits significant gains in fuel efficiency and emission control, but creates challenges related to proper engine control and calibration techniques. Accurate experimental characterization of high degree of freedom engines is essential for addressing the controls challenge. In particular, this paper focuses on the evaluation of three experimental residual gas fraction measurement techniques for use in a spark ignition engine equipped with dual-independent variable camshaft phasing (VVT).
Technical Paper

Numerical Modeling of Cross Flow Compact Heat Exchanger with Louvered Fins using Thermal Resistance Concept

2006-04-03
2006-01-0726
Compact heat exchangers have been widely used in various applications in thermal fluid systems including automotive thermal management systems. Radiators for engine cooling systems, evaporators and condensers for HVAC systems, oil coolers, and intercoolers are typical examples of the compact heat exchangers that can be found in ground vehicles. Among the different types of heat exchangers for engine cooling applications, cross flow compact heat exchangers with louvered fins are of special interest because of their higher heat rejection capability with the lower flow resistance. In this study, a predictive numerical model for the cross flow type heat exchanger with louvered fins has been developed based on the thermal resistance concept and the finite difference method in order to provide a design and development tool for the heat exchanger. The model was validated with the experimental data from an engine cooling radiator.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
Technical Paper

Simulation of an Integrated Starter Alternator (ISA) System for the HMMWV

2006-04-03
2006-01-0442
The development and use of a simulation of an Integrated Starter Alternator (ISA) for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV) is presented here. While the primary purpose of an ISA is to provide electric power for additional accessories, it can also be utilized for mild hybridization of the powertrain. In order to explore ISA's potential for improving HMMWV's fuel economy, an ISA model capable of both producing and absorbing mechanical power has been developed in Simulink. Based on the driver's power request and the State of Charge of the battery (SOC), the power management algorithm determines whether the ISA should contribute power to, or absorb power from the crankshaft. The system is also capable of capturing some of the braking energy and using it to charge the battery. The ISA model and the power management algorithm have been integrated in the Vehicle-Engine SIMulation (VESIM), a SIMULINK-based vehicle model previously developed at the University of Michigan.
Technical Paper

Analysis of Load and Speed Transitions in an HCCI Engine Using 1-D Cycle Simulation and Thermal Networks

2006-04-03
2006-01-1087
Exhaust gas rebreathing is considered to be a practical enabler that could be used in HCCI production engines. Recent experimental work at the University of Michigan demonstrates that the combustion characteristics of an HCCI engine using large amounts of hot residual gas by rebreathing are very sensitive to engine thermal conditions. This computational study addresses HCCI engine operation with rebreathing, with emphasis on the effects of engine thermal conditions during transient periods. A 1-D cycle simulation with thermal networks is carried out under load and speed transitions. A knock integral auto-ignition model, a modified Woschni heat transfer model for HCCI engines and empirical correlations to define burn rate and combustion efficiency are incorporated into the engine cycle simulation model. The simulation results show very different engine behavior during the thermal transient periods compared with steady state.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Journal Article

Impact of High Sulfur Military JP-8 Fuel on Heavy Duty Diesel Engine EGR Cooler Condensate

2008-04-14
2008-01-1081
Low-sulfur “clean” diesel fuel has been mandated in the US and Europe. However, quality of diesel fuel, particularly the sulfur content, varies significantly in other parts of the world. Due to logistical issues in various theaters of operation, the Army is often forced to rely on local fuel supplies, which exposes vehicles to diesel fuel or jet fuel (JP-8) with elevated levels of sulfur. Modern engines typically use cooled Exhaust Gas Recirculation (EGR) to meet emissions regulations. Using high-sulfur fuels and cooled EGR elevates problems associated with cooler fouling and corrosion of engine components. Hence, an experimental study has been carried out in a heavy-duty diesel engine running on standard JP-8 fuel and fuel doped with 2870 ppm of sulfur. Gas was sampled from the EGR cooler and analyzed using a condensate collection device developed according to a modified ASTM 3226-73T standard. Engine-out emissions were analyzed in parallel.
Technical Paper

Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements

2009-04-20
2009-01-0668
Extending the operating range of the gasoline HCCI engine is essential for achieving desired fuel economy improvements at the vehicle level, and it requires deep understanding of the thermal conditions in the cylinder. Combustion chamber deposits (CCD) have been previously shown to have direct impact on near-wall phenomena and burn rates in the HCCI engine. Hence, the objectives of this work are to characterize thermal properties of deposits in a gasoline HCCI engine and provide foundation for understanding the nature of their impact on autoignition and combustion. The investigation was performed using a single-cylinder engine with re-induction of exhaust instrumented with fast-response thermocouples on the piston top and the cylinder head surface. The measured instantaneous temperature profiles changed as the deposits grew on top of the hot-junctions.
Journal Article

Simulation-based Assessment of Various Dual-Stage Boosting Systems in Terms of Performance and Fuel Economy Improvements

2009-04-20
2009-01-1471
Diesel engines have been used in large vehicles, locomotives and ships as more efficient alternatives to the gasoline engines. They have also been used in small passenger vehicle applications, but have not been as popular as in other applications until recently. The two main factors that kept them from becoming the major contender in the small passenger vehicle applications were the low power outputs and the noise levels. A combination of improved mechanical technologies such as multiple injection, higher injection pressure, and advanced electronic control has mostly mitigated the problems associated with the noise level and changed the public notion of the Diesel engine technology in the latest generation of common-rail designs. The power output of the Diesel engines has also been improved substantially through the use of variable geometry turbines combined with the advanced fuel injection technology.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
Technical Paper

Comparing Enhanced Natural Thermal Stratification Against Retarded Combustion Phasing for Smoothing of HCCI Heat-Release Rates

2004-10-25
2004-01-2994
Two methods for mitigating unacceptably high HCCI heat-release rates are investigated and compared in this combined experimental/CFD work. Retarding the combustion phasing by decreasing the intake temperature is found to have good potential for smoothing heat-release rates and reducing engine knock. There are at least three reasons for this: 1) lower combustion temperatures, 2) less pressure rise when the combustion is occurring during the expansion stroke, and 3) the natural thermal stratification increases around TDC. However, overly retarded combustion leads to unstable operation with partial-burn cycles resulting in high IMEPg variations and increased emissions. Enhanced natural thermal stratification by increased heat-transfer rates was explored by lowering the coolant temperature from 100 to 50°C. This strategy substantially decreased the heat-release rates and lowered the knocking intensity under certain conditions.
Technical Paper

Modeling HCCI Combustion With High Levels of Residual Gas Fraction - A Comparison of Two VVA Strategies

2003-10-27
2003-01-3220
Adjusting the Residual Gas Fraction (RGF) by means of Variable Valve Actuation (VVA) is a strong candidate for controlling the ignition timing in Homogeneous Charge Compression Ignition (HCCI) engines. However, at high levels of residual gas fraction, insufficient mixing can lead to the presence of considerable temperature and composition variations. This paper extends previous modeling efforts to include the effect of RGF distribution on the onset of ignition and the rate of combustion using a multi-dimensional fluid mechanics code (KIVA-3V) sequentially with a multi-zone code with detailed chemical kinetics. KIVA-3V is used to simulate the gas exchange processes, while the multi-zone code computes the combustion event. It is shown that under certain conditions the effect of composition stratification is significant and cannot be captured by a single-zone model or a multi-zone model using only temperature zones.
Technical Paper

An Optimization Study of Manufacturing Variation Effects on Diesel Injector Design with Emphasis on Emissions

2004-03-08
2004-01-1560
This paper investigates the effects of manufacturing variations in fuel injectors on the engine performance with emphasis on emissions. The variations are taken into consideration within a Reliability-Based Design Optimization (RBDO) framework. A reduced version of Multi-Zone Diesel engine Simulation (MZDS), MZDS-lite, is used to enable the optimization study. The numerical noise of MZDS-lite prohibits the use of gradient-based optimization methods. Therefore, surrogate models are developed to filter out the noise and to reduce computational cost. Three multi-objective optimization problems are formulated, solved and compared: deterministic optimization using MZDS-lite, deterministic optimization using surrogate models and RBDO using surrogate models. The obtained results confirm that manufacturing variation effects must be taken into account in the early product development stages.
Technical Paper

Cylinder Pressure Reconstruction and its Application to Heat Transfer Analysis

2004-03-08
2004-01-0922
In this paper, a new method for cylinder pressure reconstruction is proposed based on the concept of a dimensionless pressure curve in the frequency domain. It is shown that cylinder pressure profiles, acquired over a wide range of engine speeds and loads, exhibit similarity. Hence, cylinder pressure traces collapse into a set of dimensionless curves within a narrow range after normalization in the frequency domain. The dimensionless pressure traces can be described by a curve-fit family, which can be used for reconstructing pressure diagrams back into the time domain at any desired condition. The accuracy associated with this method is analyzed and its application to engine heat transfer analysis is demonstrated.
Technical Paper

Quantification of Thermal Shock in a Piezoelectric Pressure Transducer

2005-05-11
2005-01-2092
One of the major problems limiting the accuracy of piezoelectric transducers for cylinder pressure measurements in an internal-combustion (IC) engine is the thermal shock. Thermal shock is generated from the temperature variation during the cycle. This temperature variation results in contraction and expansion of the diaphragm and consequently changes the force acting on the quartz in the pressure transducer. An empirical equation for compensation of the thermal shock error was derived from consideration of the diaphragm thermal deformation and actual pressure data. The deformation and the resulting pressure difference due to thermal shock are mainly a function of the change in surface temperature and the equation includes two model constants. In order to calibrate these two constants, the pressure inside the cylinder of a diesel engine was measured simultaneously using two types of pressure transducers, in addition to instantaneous wall temperature measurement.
X