Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Technical Paper

Vehicular Problems as Accident Causes-an Overview of Available Information

1977-02-01
770117
This paper provides final results of an accident investigation project conducted by the Indiana University Institute for Research in Public Safety (IRPS), for the National Highway Traffic Safety Administration, emphasizing particularly the role of vehicular factors in causing accidents. In addition, these results are put in context with other recent studies which have provided information on the same topic. Data collection for the Indiana University accident causation study was confined to Monroe County, Indiana, where between 1970 and 1975, 2,258 accidents were investigated by teams of technicians using a consistent set of procedures and terminology. Concurrently, 420 in-depth investigations were conducted by a multidisciplinary team. Vehicular degradations, malajustments, and failures were identified as definite causes in 4.5% of these accidents by the multidisciplinary team, and in 4.1% by the technicians.
Technical Paper

Response of Brake Light Filaments to Impact

1988-01-29
880234
Taillight lamp filaments provide valuable information on their illumination status during a collision. This information is contained in the shape of filament deformation, extent and nature of filament fracture, and filament oxidation. The degree of deformation of these filaments, a quantity which may be useful in determining velocities prior to impact, has been documented for headlights but has not been closely examined for taillights. In this paper, a study of the quantification of automobile taillight filament response when subjected to low speed impacts is presented. These studies include two different brands, five velocities up to approximately 19 miles per hour, three filament orientations, and two different deceleration pulses. Recommendations are given for further study in order to provide sufficient data for practical application and use in accident reconstruction.
X