Refine Your Search

Topic

Search Results

Journal Article

The Impact of a Non-Linear Turbulent Stress Relationship on Simulations of Flow and Combustion in an HSDI Diesel Engine

2008-04-14
2008-01-1363
In-cylinder flow and combustion processes simulated with the standard k-ε turbulence model and with an alternative model-employing a non-linear, quadratic equation for the turbulent stresses-are contrasted for both motored and fired engine operation at two loads. For motored operation, the differences observed in the predictions of mean flow development are small and do not emerge until expansion. Larger differences are found in the spatial distribution and magnitude of turbulent kinetic energy. The non-linear model generally predicts lower energy levels and larger turbulent time scales. With fuel injection and combustion, significant differences in flow structure and in the spatial distribution of soot are predicted by the two models. The models also predict considerably different combustion efficiencies and NOx emissions.
Technical Paper

Experimental Assessment of Reynolds-Averaged Dissipation Modeling in Engine Flows

2007-09-16
2007-24-0046
The influence of the constant C3, which multiplies the mean flow divergence term in the model equation for the turbulent kinetic energy dissipation, is examined in a motored diesel engine for three different swirl ratios and three different spatial locations. Predicted temporal histories of turbulence energy and its dissipation are compared with experimentally-derived estimates. A “best-fit” value of C3 = 1.75, with an approximate uncertainty of ±0.3 is found to minimize the error between the model predictions and the experiments. Using this best-fit value, model length scale behavior corresponds well with that of measured velocity-correlation integral scales during compression. During expansion, the model scale grows too rapidly. Restriction of the model assessment to the expansion stroke suggests that C3 = 0.9 is more appropriate during this period.
Technical Paper

Multidimensional Simulation of the Influence of Fuel Mixture Composition and Injection Timing in Gasoline-Diesel Dual-Fuel Applications

2008-04-14
2008-01-0031
Homogeneous charge compression ignition (HCCI) combustion is considered to be an attractive alternative to traditional internal combustion engine operation because of its extremely low levels of pollutant emissions. However, there are several difficulties that must be overcome for HCCI practical use, such as difficult ignition timing controllability. Indeed, too early or too late ignition can occur with obvious drawbacks. In addition, the increase in cyclic variation caused by the ignition timing uncertainty can lead to uneven engine operation. As a way to solve the combustion phasing control problem, dual-fuel combustion has been proposed. It consists of a diesel pilot injection used to ignite a pre-mixture of gasoline (or other high octane fuel) and air. Although dual-fuel combustion is an attractive way to achieve controllable HCCI operation, few studies are available to help the understanding of its in-cylinder combustion behavior.
Technical Paper

Study of Diesel Engine Size-Scaling Relationships Based on Turbulence and Chemistry Scales

2008-04-14
2008-01-0955
Engine design is a time consuming process in which many costly experimental tests are usually conducted. With increasing prediction ability of engine simulation tools, engine design aided by CFD software is being given more attention by both industry and academia. It is also of much interest to be able to use design information gained from an existing engine design of one size in the design of engines of other sizes to reduce design time and costs. Therefore it is important to study size-scaling relationships for engines over wide range of operating conditions. This paper presents CFD studies conducted for two production diesel engines - a light-duty GM-Fiat engine (0.5L displacement) and a heavy-duty Caterpillar engine (2.5L displacement). Previously developed scaling arguments, including an equal spray penetration scaling model and an extended, equal flame lift-off length scaling model were employed to explore the parametric scaling connections between the two engines.
Technical Paper

Integration of a Continuous Multi-Component Fuel Evaporation Model with an Improved G-Equation Combustion and Detailed Chemical Kinetics Model with Application to GDI Engines

2009-04-20
2009-01-0722
A continuous multi-component fuel evaporation model has been integrated with an improved G-equation combustion and detailed chemical kinetics model. The integrated code has been successfully used to simulate a gasoline direct injection engine. In the multi-component fuel model, the theory of continuous thermodynamics is used to model the properties and composition of multi-component fuels such as gasoline. In the improved G-equation combustion model a flamelet approach based on the G-equation is used that considers multi-component fuel effects. To precisely calculate the local and instantaneous residual which has a great effect on the laminar flame speed, a “transport equation residual” model is used. A Damkohler number criterion is used to determine the combustion mode in flame containing cells.
Technical Paper

An Experimental Study of Dual Fueling with Gasoline Port Injection in a Single-Cylinder, Air-Cooled HSDI Diesel Generator

2010-04-12
2010-01-0869
An experimental study was conducted on an air cooled high-speed, direct-injection diesel generator that investigated the use of gasoline in a dual fuel PCCI strategy. The single-speed generator used in the study has an effective compression ratio of 17 and runs at 3600 rev/min. Varying amounts of gasoline were introduced into the combustion chamber through a port injection system. The generator uses an all-mechanical diesel fuel injection system that has a fixed injection timing. The experiments explored variable intake temperatures and fuel split quantities to investigate different combustion phasing regimes. Results from the study showed low combustion efficiency at low load. Low load operation was also characterized by high levels of HC and CO (in excess of 20 g/kwh and 50 g/kwh respectively). Operation at 75% load was more efficient, and displayed three different combustion regimes that are possible with PIG (port injected gasoline) dual fuel PCCI.
Technical Paper

Investigation of NOx Predictions from Biodiesel-fueled HCCI Engine Simulations Using a Reduced Kinetic Mechanism

2010-04-12
2010-01-0577
A numerical study was performed to compare the formation of nitric oxide (NO) and nitrogen dioxide (NO₂), collectively termed NOx, resulting from biodiesel and diesel combustion in an internal combustion engine. It has been shown that biodiesel tends to increase NOx compared to diesel, and to-date, there is no widely accepted explanation. Many factors can lead to increased NOx formation and it was of interest to determine if fuel chemistry plays a significant role. Therefore, in order to isolate the fuel chemistry from mixing processes typical in a compression ignition engine, sprays were not considered in the present investigation. The current study compares the NOx formation of surrogates for biodiesel (as represented by methyl butanoate and n-heptane) and diesel (n-heptane) under completely homogeneous conditions. Combustion of each fuel was simulated using the Senkin code for both an adiabatic, constant volume reactor, and an adiabatic, single-zone HCCI engine model.
Technical Paper

Simulation of Effects of Valve Pockets and Internal Residual Gas Distribution on HSDI Diesel Combustion and Emissions

2004-03-08
2004-01-0105
Experiments show that intake flow details have a significant influence on High-Speed Direct-Injection (HSDI) diesel engine soot emissions. Four different intake modes were simulated using the combination of the CFD codes, STAR-CD and KIVA-3V, to investigate spray-intake flow-emission interaction characteristics. The simulation results were compared to steady-state flow bench data and engine experimental data. It was found that it is difficult to accurately predict the timing of the small pilot and main combustion events, simultaneously, with current simplified ignition models. NOx emissions were predicted well, however, an insensitivity of the soot emissions to the details of the intake process was found, mainly due to the deficiencies in predicting the ignition delay. The results show that a strong swirling flow causes the formed soot to remain within the bowl, leading to high soot emissions.
Technical Paper

Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD

2001-03-05
2001-01-1026
Detailed chemical kinetics was implemented in the KIVA-3V multidimensional CFD code to study the combustion process in Homogeneous Charge Compression Ignition (HCCI) engines. The CHEMKIN code was implemented such that the chemistry and flow solutions were coupled. Detailed reaction mechanisms were used to simulate the fuel chemistry of ignition and combustion. Effects of turbulent mixing on the reaction rates were also considered. The model was validated using the experimental data from two modified heavy-duty diesel engines, including a Volvo engine and a Caterpillar engine operated at the HCCI mode. The results show that good levels of agreement were obtained using the present KIVA/CHEMKIN model for a wide range of engine conditions, including various fuels, injection systems, engine speeds, and EGR levels. Ignition timings were predicted well without the need to adjust any kinetic constants.
Technical Paper

The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine - A Combined Experimental and Numerical Study

2004-03-08
2004-01-1678
Simultaneous two-component measurements of gas velocity and multi-dimensional numerical simulation are employed to characterize the evolution of the in-cylinder turbulent flow structure in a re-entrant bowl-in-piston engine under motored operation. The evolution of the mean flow field, turbulence energy, turbulent length scales, and the various terms contributing to the production of the turbulence energy are correlated and compared, with the objectives of clarifying the physical mechanisms and flow structures that dominate the turbulence production and of identifying the source of discrepancies between the measured and simulated turbulence fields. Additionally, the applicability of the linear turbulent stress modeling hypothesis employed in the k-ε model is assessed using the experimental mean flow gradients, turbulence energy, and length scales.
Technical Paper

Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion

2002-06-03
2002-01-1925
The present study investigated HCCI combustion in a heavy-duty diesel engine both experimentally and numerically. The engine was equipped with a hollow-cone pressure-swirl injector using gasoline direct injection. Characteristics of HCCI combustion were obtained by very early injection with a heated intake charge. Experimental results showed an increase in NOx emission and a decrease in UHC as the injection timing was retarded. It was also found that optimization can be achieved by controlling the intake temperature together with the start-of-injection timing. The experiments were modeled by using an engine CFD code with detailed chemistry. The CHEMKIN code was implemented into KIVA-3V such that the chemistry and flow solutions were coupled. The model predicted ignition timing, cylinder pressure, and heat release rates reasonably well. The NOx emissions were found to increase as the injection timing was retarded, in agreement with experimental results.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

Late-Cycle Turbulence Generation in Swirl-Supported, Direct-Injection Diesel Engines

2002-03-04
2002-01-0891
Cycle-resolved analysis of velocity data obtained in the re-entrant bowl of a fired high-;speed, direct-injection diesel engine, demonstrates an unambiguous, approximately 100% increase in late-cycle turbulence levels over the levels measured during motored operation. Model predictions of the flow field, obtained employing RNG k-ε turbulence modeling in KIVA-3V, do not capture this increased turbulence. A combined experimental and computational approach is taken to identify the source of this turbulence. The results indicate that the dominant source of the increased turbulence is associated with the formation of an unstable distribution of mean angular momentum, characterized by a negative radial gradient. The importance of this source of flow turbulence has not previously been recognized for engine flows. The enhanced late-cycle turbulence is found to be very sensitive to the flow swirl level.
Technical Paper

Modeling Ignition and Combustion in Spark-ignition Engines Using a Level Set Method

2003-03-03
2003-01-0722
An improved discrete particle ignition kernel (DPIK) model and the G-equation combustion model have been developed and implemented in KIVA-3V. In the ignition model, the spark ignition kernel growth is tracked by Lagrangian markers and the spark discharge energy and flow turbulence effects on the ignition kernel growth are considered. The predicted ignition kernel size was compared with the available measurements and good agreement was obtained. Once the ignition kernel grows to a size where the turbulent flame is fully developed, the level set method (G-equation) is used to track the mean turbulent flame propagation. It is shown that, by ignoring the detailed turbulent flame brush structure, fine numerical resolution is not needed, thus making the models suitable for use in multidimensional modeling of SI engine combustion.
Technical Paper

Modeling the Effects of Geometry Generated Turbulence on HCCI Engine Combustion

2003-03-03
2003-01-1088
The present study uses a numerical model to investigate the effects of flow turbulence on premixed iso-octane HCCI engine combustion. Different levels of in-cylinder turbulence are generated by using different piston geometries, namely a disc-shape versus a square-shape bowl. The numerical model is based on the KIVA code which is modified to use CHEMKIN as the chemistry solver. A detailed reaction mechanism is used to simulate the fuel chemistry. It is found that turbulence has significant effects on HCCI combustion. In the current engine setup, the main effect of turbulence is to affect the wall heat transfer, and hence to change the mixture temperature which, in turn, influences the ignition timing and combustion duration. The model also predicts that the combustion duration in the square bowl case is longer than that in the disc piston case which agrees with the measurements.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Modeling Premixed and Direct Injection SI Engine Combustion Using the G-Equation Model

2003-05-19
2003-01-1843
A level set G-equation model has been developed to model the combustion process in spark ignition engines. The spark ignition process was modeled using an improved version of the Discrete Particle Ignition Kernel (DPIK) model. The two models were implemented into the KIVA-3V code to simulate SI engine combustion under both premixed and direct injection conditions. In the ignition model, the ignition kernel growth is tracked by Lagrangian markers, and spark discharge energy and flow turbulence effects on the kernel growth are considered. Once the ignition kernel grows to a size where the turbulent flame is fully developed, the G-equation model is used to track the mean turbulent flame evolution. When combined with a characteristic time scale combustion model, the models were also used to simulate stratified combustion in DISI engines, where the triple flame structure must be considered.
Technical Paper

Assessment of RNG Turbulence Modeling and the Development of a Generalized RNG Closure Model

2011-04-12
2011-01-0829
RNG k-ε closure turbulence dissipation equations are evaluated employing the CFD code KIVA-3V Release 2. The numerical evaluations start by considering simple jet flows, including incompressible air jets and compressible helium jets. The results show that the RNG closure turbulence model predicts lower jet tip penetration than the "standard" k-ε model, as well as being lower than experimental data. The reason is found to be that the turbulence kinetic energy is dissipated too slowly in the downstream region near the jet nozzle exit. In this case, the over-predicted R term in RNG model becomes a sink of dissipation in the ε-equation. As a second step, the RNG turbulence closure dissipation models are further tested in complex engine flows to compare against the measured evolution of turbulence kinetic energy, and an estimate of its dissipation rate, during both the compression and expansion processes.
Technical Paper

Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

2012-04-16
2012-01-1336
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
X