Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

Network Scheduling for Distributed Controls of Electric Vehicles Considering Actuator Dynamic Characteristics

2017-03-28
2017-01-0019
Electric vehicle (EV) has been regarded as not only an effective solution for environmental issues but also a more controllable and responsible device to driving forces with electric motors and precise torque measurement. For electric vehicle equipped with four in-wheel motors, its tire longitudinal forces can be generated independently and individually with fully utilized tire adhesion at each corner. This type of the electric vehicles has a distributed drive system, and often regarded as an over-actuated system since the number of actuators in general exceeds the control variables. Control allocation (CA) is often considered as an effective means for the control of over-actuated systems. The in-vehicle network technology has been one of the major enablers for the distributed drive systems. The vehicle studied in this research has an electrohydraulic brake system (EHB) on front axle, while an electromechanical brake system (EMB) on rear axle.
Journal Article

Function-Based Architecture Design for Next-Generation Automotive Brake Controls

2016-04-05
2016-01-0467
This paper presents a unified novel function-based brake control architecture, which is designed based on a top-down approach with functional abstraction and modularity. The proposed control architecture includes a commands interpreter module, including a driver commands interpreter to interpret driver intention, and a command integration to integrate the driver intention with senor-guided active driving command, state observers for estimation of vehicle sideslip, vehicle speed, tire lateral and longitudinal slips, tire-road friction coefficient, etc., a commands integrated control allocation module which aims to generate braking force and yaw moment commands and provide optimal distribution among four wheels without body instability and wheel lock or slip, a low-level control module includes four wheel pressure control modules, each of which regulates wheel pressure by fast and accurate tracking commanded wheel pressure.
Technical Paper

Hierarchical Framework for Adaptive Cruise Control with Model Predictive Control Method

2017-09-23
2017-01-1963
Adaptive cruise control (ACC), as one of the advanced driver assistance systems (ADAS), has become increasingly popular in improving both driving safety and comfort. Since the objectives of ACC can be multi-dimensional, and often conflict with each other, it is a challenging task in its control design. The research presented in this paper takes ACC control design as a constrained optimization problem with multiple objectives. A hierarchical framework for ACC control is introduced, aimed to achieve optimal performance on driving safety and comfort, speed and/or distance tracking, and fuel economy whenever possible. Under the hierarchical framework, the operational mode is determined in the upper layer, in which a model predictive control (MPC) based spacing controller is employed to deal with the multiple control objectives. On the other hand, the lower layer is for actuator control, such as braking and driving control for vehicle longitudinal dynamics.
Technical Paper

Design of Automatic Parallel Parking System Based on Multi-Point Preview Theory

2018-04-03
2018-01-0604
As one of advanced driver assistance systems (ADAS), automatic parking system has great market prospect and application value. In this paper, based on an intelligent vehicle platform, an automatic parking system is designed by using multi-point preview theory. The vehicle kinematics model was established, based on Ackermann steering principle. By analyzing working conditions of parallel parking, complex constraint condition of parking trajectory is established and reference trajectory based on sine wave is proposed. In addition, combined with multi-point preview theory, the design of trajectory following controller for automatic parking is completed. The cost function is designed, which consider the trajectory following effect and the degree of easy handling. The optimization of trajectory following control is completed by using the cost function.
Technical Paper

Personalized Adaptive Cruise Control Considering Drivers’ Characteristics

2018-04-03
2018-01-0591
In order to improve drivers’ acceptance to advanced driver assistance systems (ADAS) with better adaptation, drivers’ driving behavior should play key role in the design of control strategy. Adaptive cruise control systems (ACC) have many factors that can be influenced by different driving behavior. It is important to recognize drivers’ driving behavior and take human-like parameters to the adaptive cruise control systems to assist different drivers effectively via their driving characteristics. The paper proposed a method to recognize drivers’ behavior and intention based on Gaussian Mixture Model. By means of a fuzzy PID control method, a personalized ACC control strategy was designed for different kinds of drivers to improve the adaptabilities of the systems. Several typical testing scenarios of longitudinal case were created with a host vehicle and a traffic vehicle.
Technical Paper

Driving Style Identification Strategy Based on DS Evidence Theory

2023-04-11
2023-01-0587
Driving assistance system is regarded as an effective method to improve driving safety and comfort and is widely used in automobiles. However, due to the different driving styles of different drivers, their acceptance and comfort of driving assistance systems are also different, which greatly affects the driving experience. The key to solving the problem is to let the system understand the driving style and achieve humanization or personalization. This paper focuses on clustering and identification of different driving styles. In this paper, based on the driver's real vehicle experiment, a driving data acquisition platform was built, meanwhile driving conditions were set and drivers were recruited to collect driving information. In order to facilitate the identification of driving style, the correlation analysis of driving features is conducted and the principal component analysis method is used to reduce the dimension of driving features.
Technical Paper

Emergency Steering Evasion Torque Assistance Based on Optimized Trajectory

2019-04-02
2019-01-0888
When automobile is at the threat of collisions, steering usually needs a shorter longitudinal distance than braking to avoid collision, especially at a high speed. In emergency steering evasion, the vehicle may be out of the road or colliding with obstacles ahead when the driver’s steering torque is excessive or insufficient. In view of the above problems, this paper presents an emergency steering evasion torque assistance system based on optimized trajectory. First, a feasible steering evasion area is established which treats the paths of excessive and insufficient steering as boundary conditions in this paper. An optimized trajectory is derived from the lateral acceleration of the vehicle and the time to the adjacent lane as optimization conditions. Second, a two degree of freedom vehicle model is used to represent dynamics of the vehicle.
Technical Paper

Development and Verification of Control Algorithm for Permanent Magnet Synchronous Motor of the Electro-Mechanical Brake Booster

2019-04-02
2019-01-1105
To meet the new requirements of braking system for modern electrified and intelligent vehicles, various novel electro-mechanical brake boosters (Eboosters) are emerging. This paper is aimed at a new type of the Ebooster, which is mainly consisted of a permanent magnet synchronous motor (PMSM), a two-stage reduction transmission and a servo mechanism. Among them, the PMSM is a vital actuator to realize the functions of the Ebooster. To get fast response of the Ebooster system, a novel control strategy employing a maximum torque per ampere (MTPA) control with current compensation decoupling and current-adjusting adaptive flux-weakening control is proposed, which requires the PMSM can operate in a large speed range and maintain a certain anti-load interference capability. Firstly, the wide speed control strategy for the Ebooster’s PMSM is designed in MATLAB/Simulink.
Technical Paper

Linear Electro-Magnetic Valve Characteristic Analysis and Precise Pressure Control of the Electro-Hydraulic Brake System

2016-04-05
2016-01-0093
With the development of modern vehicle chassis control systems, such as Anti-Lock Brake System (ABS), Acceleration Slip Regulation (ASR), Electronic Stability Control (ESC), and Regenerative Braking System (RBS) for EVs, etc., there comes a new requirement for the vehicle brake system that is the precise control of the wheel brake pressure. The Electro-Hydraulic Brake system (EHB), which owns an ability to adjust four wheels’ brake pressure independently, can be a good match with these systems. However, the traditional control logic of EHB is based on the PWM (Pulse-Width Modulation), which has a low control accuracy of linear electromagnetic valves. Therefore, this paper presents a research of the linear electro-magnetic valve characteristic analysis, and proposes a precise pressure control algorithm of the EHB system with a feed forward and a PID control of linear electro-magnetic valves.
Technical Paper

Fault-Tolerant Control of Brake-by-Wire Systems Based on Control Allocation

2016-04-05
2016-01-0132
Brake-by-wire (BBW) system has drawn a great attention in recent years as driven by rapidly increasing demands on both active brake controls for intelligent vehicles and regenerative braking controls for electric vehicles. However, unlike conversional brake systems, the reliability of the brake-by-wire systems remains to be challenging due to its lack of physical connection in case of system failure. There are various causes for the failure of a BBW system, such as failure of brake controller, loss of sensor signals, failure of communication or even power supply, to name a few. This paper presents a fault-tolerant control under novel control architecture. The proposed control architecture includes a driver command interpreter module, a command integration module, a control allocation module, a fault diagnosis module and state observers. The fault-tolerant control is designed based on a quadratic optimal control method with consideration of actuator constraints.
Journal Article

Investigating the Parameterization of Dugoff Tire Model Using Experimental Tire-Ice Data

2016-09-27
2016-01-8039
Tire modeling plays an important role in the development of an Active Vehicle Safety System. As part of a larger project that aims at developing an integrated chassis control system, this study investigates the performance of a 19” all-season tire on ice for a sport utility vehicle. A design of experiment has been formulated to quantify the effect of operational parameters, specifically: wheel slip, normal load, and inflation pressure on the tire tractive performance. The experimental work was conducted on the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory at Virginia Tech. The paper investigates an approach for the parameterization of the Dugoff tire model based on the experimental data collected. Compared to other models, this model is attractive in terms of its simplicity, low number of parameters, and easy implementation for real-time applications.
Journal Article

Power Assisted Braking Control Based on a Novel Mechatronic Booster

2016-04-05
2016-01-1644
This paper presents a power assisted braking control based on a novel mechatronic booster system. A brake pedal feel control unit is first discussed which includes a pedal emulator with an angular sensor to detect driver’s pedal travel, a signal processing module with a Kalman filter for sensor signal conditioning, and a driver braking intention detection and behavior recognition module based on the displacement and velocity of the pedal travel. A power assisted braking control is then presented as the core of the system which consists of controls on basic power assist, velocity compensation and friction compensation. The friction is estimated based on a generic algorithm offline. A motor controller is designed to provide the desired torque for the power assist. Finally, a novel mechatronic booster system is designed and built with an experimental platform set up with a widely adopted rapid prototype system using dSPACE products, such as MicroAutoBox, RapidPro, etc.
Technical Paper

Research on Artificial Potential Field based Soft Actor-Critic Algorithm for Roundabout Driving Decision

2024-04-09
2024-01-2871
Roundabouts are one of the most complex traffic environments in urban roads, and a key challenge for intelligent driving decision-making. Deep reinforcement learning, as an emerging solution for intelligent driving decisions, has the advantage of avoiding complex algorithm design and sustainable iteration. For the decision difficulty in roundabout scenarios, this paper proposes an artificial potential field based Soft Actor-Critic (APF-SAC) algorithm. Firstly, based on the Carla simulator and Gym framework, a reinforcement learning simulation system for roundabout driving is built. Secondly, to reduce reinforcement learning exploration difficulty, global path planning and path smoothing algorithms are designed to generate and optimize the path to guide the agent.
X