Refine Your Search

Topic

Author

Search Results

Technical Paper

Reaction Analysis and Modeling of Fast SCR in a Cu-Chabazite SCR Catalyst Considering Generation and Decomposition of Ammonium Nitrate

2021-09-05
2021-24-0073
In this study, reaction path analysis and modeling of NOx reduction phenomena by fast SCR reaction on a Cu-chabazite catalyst were conducted, considering the formation and decomposition of ammonium nitrate (NH4NO3). White crystals of NH4NO3 decompose at temperatures < 200 °C. Thus, the reaction behavior changes at 200 °C under fast SCR reaction conditions. NH4NO3 formation can occur on both Cu sites and Brønsted acid sites, which are active sites for NOx reduction in the Cu-chabazite catalyst, but it is unclear where NH4NO3 accumulates on the catalyst. Analyses using catalyst test pieces with different active sites were performed to estimate this accumulation. The results suggested that NH4NO3 accumulation does not depend on the presence of either Cu sites or Brønsted acid sites. Therefore, it is assumed that NH4NO3 can be accumulated everywhere on the catalyst, including on the zeolite framework. This phenomenon was included in the model as formation/accumulation sites S'.
Technical Paper

Avoidance Algorithm Development to Control Unrealistic Operating Conditions of Diesel Engine Systems under Transient Conditions

2021-09-05
2021-24-0025
Emission regulations are becoming tighter, and Real Driving Emissions (RDE) is proposed as a testing cycle for evaluating modern engine emissions under a wide operation range. For this reason, engine manufacturers have been developing a method to effectively assess engine performances and emissions under a wide range of transient conditions. Transient engine performances can be evaluated efficiently by applying time-series data created by chirp signals. However, when the time-series data produced by the chirp signal are used directly, the engine hardware may damage, and emission performances deteriorate drastically. It is therefore essential to develop a method to avoid these undesirable operating conditions. This work aims to develop an algorithm to avoid such unrealistic operation conditions for engine performance evaluation. A virtual diesel engine (VDE) model is developed based on a four-cylinder engine using GT-POWER software.
Technical Paper

Relationship between Turbulent Burning Velocity and Karlovitz Number under EGR Conditions

2020-09-15
2020-01-2051
The purpose of this paper is to find a universal law to predict a turbulent burning velocity under various operating conditions and engine specifications. This paper presents the relationship between turbulent burning velocity and Karlovitz number. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine speed and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. Karlovitz number was calculated with Three Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical reaction calculation, which condition was based on the experiment. The experimental and calculation results show that turbulent burning velocity is predicted by using Karlovitz number in the engine conditions, which varies depending on engine speed, EGR rates and the designs of intake ports.
Technical Paper

Reaction Path Analysis and Modeling of NOx Reduction in a Cu-chabazite SCR Catalyst Considering Cu Redox Chemistry and Reversible Hydrolysis of Cu Sites

2020-09-15
2020-01-2181
In this study, reaction path analysis and modeling of NOx reduction phenomena by selective catalytic reduction (SCR) with NH3 over a Cu-chabazite catalyst were conducted considering changes in the valence state of Cu sites and local structure due to differences in ligands to the Cu sites. The analysis showed that in the Cu-chabazite catalyst, NOx was mainly reduced by adsorbed NH3 on divalent Cu sites accompanied by a change in valence state of Cu from divalent to monovalent. It is known that the activation energy of NOx reduction on a Cu-chabazite catalyst changes between low temperatures ≤ 200 °C and mid to high temperatures ≥ 300 °C. To express this phenomenon, a reversible hydrolysis reaction based on the difference in coordination state of hydroxyl groups (OH−) to Cu sites at low and high temperatures was introduced into the model.
Technical Paper

A Model for Predicting Turbulent Burning Velocity by using Karlovitz Number and Markstein Number under EGR Conditions

2021-09-21
2021-01-1146
The purpose of this paper is to build up a model for predicting turbulent burning velocity which can be used for One-Dimensional (1D) engine simulation. This paper presents the relationship between turbulent burning velocity, the Karlovitz number, and the Markstein number for building up the prediction model. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine loads and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. The Karlovitz number was calculated using Three-Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical kinetics simulation with a premixed laminar flame model. The Markstein number was also calculated using detailed chemical kinetics simulation with the Extinction of Opposed-flow Flame model.
Technical Paper

Effects of Partial Oxidation in an Unburned Mixture on a Flame Stretch under EGR Conditions

2021-09-21
2021-01-1165
The purpose of the present study is to find a way to extend a combustion stability limit for diluted combustion in a spark-ignition (SI) gasoline engine which has a high compression ratio. This paper focuses on partial oxidation in an unburned mixture which is observed in the high compression engine and clarifies the effect of partial oxidation in an unburned mixture on the behavior of a flame stretch and the extinction limit. The behavior of the flame stretch was simulated using the detailed chemical kinetics simulation with the opposed-flow flame reactor model. In the simulation, the reactants which have various reaction progress variables were examined to simulate the flame stretch and extinction under the partial oxidation conditions. The mixtures were also diluted by complete combustion products which represent exhaust gas recirculation (EGR).
Technical Paper

Prediction of Soot Mass and Particle Size in a High-boosted Diesel Engine using Large Eddy Simulation

2021-09-21
2021-01-1168
Soot mass production was investigated in high-boosted diesel engine tests by changing various operating parameters. A mixed timescale subgrid model of large eddy simulation (LES) was applied to simulate the detailed mixture formation, combustion and soot formation influenced by turbulence in diesel engine combustion. The combustion model used a direct integration approach with an explicit ordinary differential equation (ODE) solver and additional parallelization by OpenMP. Soot mass production within a computation cell was determined from a phenomenological soot formation model developed by WASEDA University. The model was combined with the LES code and included the following important steps: particle inception, in which naphthalene was assumed to grow irreversibly to form soot; surface growth with the addition of C2H2; surface oxidation due to OH radicals and O2 attack; particle coagulation; and particle agglomeration.
Technical Paper

Effects of Using an Electrically Heated Catalyst on the State of Charge of the Battery Pack for Series Hybrid Electric Vehicles at Cold Start

2020-04-14
2020-01-0444
Battery models are being developed as a component of the powertrain systems of hybrid electric vehicles (HEVs) to predict the state of charge (SOC) accurately. Electrically heated catalysts (EHCs) can be employed in the powertrains of HEVs to reach the catalyst light off temperature in advance. However, EHCs draw power from the battery pack and hence sufficient energy needs to be stored to power auxiliary components. In series HEVs, the engine is primarily used to charge the battery pack. Therefore, it is important to develop a control strategy that triggers engine start/stop conditions and reduces the frequency of engine operation to minimize the equivalent fuel consumption. In this study, a battery pack model was constructed in MATLAB-Simulink to investigate the SOC variation of a high-power lithium ion battery during extreme engine cold start conditions (-7°C) with/without application of an EHC.
Journal Article

Dual Phase High Temperature Heat Release Combustion

2008-04-14
2008-01-0007
To allow the HCCI vehicles to enter the market in the future, it is important to investigate the combustion deviations and operational range differences between the same research octane number fuels. In this paper, eighteen kinds of two hydrocarbon blended fuels, which were composed of n-heptane and another hydrocarbon, such as iso-octane, diisobutylene, 4-methyl-1-pentene, toluene or cyclopentane, were evaluated. Those fuels were blended to have the same research octane numbers of 75, 80, 85 and 90 by changing the blending volume ratio of n-heptane and counterpart hydrocarbon. Intake air was supercharged to 155 kPa abs and its temperature was kept at 58 °C. The HCCI engine was operated at 1000 rpm. Neither hot EGR, nor any other combustion stratification system was utilized in order to investigate the purely hydrocarbon effects on HCCI combustion.
Technical Paper

Influence of Diesel Post Injection Timing on HC Emissions and Catalytic Oxidation Performance

2006-10-16
2006-01-3442
For diesel emission control systems containing a Diesel Oxidation Catalyst (DOC) and a Catalyzed Soot Filter (CSF) the DOC is used to oxidize the additional fuel injected into the cylinder and/or the exhaust pipe for the purpose of increasing the CSF inlet temperature during the soot regeneration. Hydrocarbon (HC) oxidation performance of the DOC is affected by HC species as well as a catalyst design, i.e., precious metal species, support materials and additives. How engine-out HC species vary as a function of fuel supply conditions is not well understood. In addition, the relationship between catalyst design and oxidation activity of different hydrocarbon species requires further study. In this study, diesel fuel was supplied by in-cylinder, post injection and exhaust HC species were measured by a gas chromatograph-mass spectrometry (GC-MS) and a gas analyzer. The post injection timing was set to either 73°, 88° or 98° ATDC(after top dead center).
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Technical Paper

Conversion Performance Prediction of Thermal-Deteriorated Three-Way Catalysts: Surface Reaction Model Development Considering Platinum Group Metals and Co-Catalyst

2021-09-05
2021-24-0077
Three-way catalyst (TWC) converters can purify harmful substances, such as carbon monoxide, nitrogen oxides, and hydrocarbons, from the exhaust gases of gasoline engines. However, large amounts of these substances may be emitted before the TWC reaches its light-off temperature during cold starts, and its performance may be impaired by thermal deterioration during high-load driving. In this work, a simulation model was developed using axisuite commercial software by Exothermia S.A to predict the light-off conversion performance of Pd/CeO2-ZrO2-Al2O3 catalysts with different degrees of thermal deterioration. The model considered detailed surface reactions and the main factor of the deterioration mechanism. In the detailed reaction mechanism, adsorption, desorption, and surface reactions of each gas species at active sites of the platinum group metal (PGM) particles were considered based on the Langmuir-Hinshelwood mechanism.
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Journal Article

Combustion Characteristics of Emulsified Blends of Water and Diesel Fuel in a Diesel Engine with Cooled EGR and Pilot Injection

2013-10-15
2013-32-9022
Water and diesel fuel emulsions containing 13% and 26% water by volume were investigated in a modern diesel engine with relatively early pilot injection, supercharging, and cooled EGR. The heat release from the pilot injection with water emulsions is retarded toward the top dead center due to the poor ignitability, which enables larger pilot and smaller main injection quantities. This characteristic results in improvements in the thermal efficiency due to the larger heat release near the top dead center and the smaller afterburning. With the 26% water emulsion, mild, smokeless, and very low NOx operation is possible at an optimum pilot injection quantity and 15% intake oxygen with EGR at or below 0.9 MPa IMEP, a condition where large smoke emissions are unavoidable with regular unblended diesel fuel. Heat transfer analysis with Woschni's equation did not show the decrease in cooling loss with the water emulsion fuels.
Journal Article

A Numerical Study of the Effects of FAME Blends on Diesel Combustion and Emissions Characteristics Using a 3-D CFD Code Combined with Detailed Kinetics and Phenomenological Soot Formation Models

2013-10-14
2013-01-2689
The objective of the present research is to analyze the effects of using oxygenated fuels (FAMEs) on diesel engine combustion and emission (NOx and soot). We studied methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many types of biodiesels. Engine tests and numerical simulations were performed for 100% MO (MO100), 40% MO blended with JIS#2 diesel (MO40) and JIS#2 diesel (D100). The effects of MO on diesel combustion and emission characteristics were studied under engine operating conditions typically encountered in passenger car diesel engines, focusing on important parameters such as pilot injection, injection pressure and exhaust gas recirculation (EGR) rate. We used a diesel engine complying with the EURO4 emissions regulation, having a displacement of 2.2 L for passenger car applications. In engine tests comparing MO with diesel fuel, no effect on engine combustion pressure was observed for all conditions tested.
Journal Article

Combustion and Emissions with Bio-alcohol and Nonesterified Vegetable Oil Blend Fuels in a Small Diesel Engine

2012-10-23
2012-32-0017
Combustion and exhaust gas emissions of alcohol and vegetable oil blends including a 20% ethanol + 40% 1-butanol + 40% vegetable oil blend and a 50% 1-butanol + 50% vegetable oil blend were examined in a single cylinder, four-stroke cycle, 0.83L direct injection diesel engine, with a supercharger and a common rail fuel injection system. A 50% diesel oil + 50% vegetable oil blend and regular unblended diesel fuel were used as reference fuels. The boost pressure was kept constant at 160 kPa (absolute pressure), and the cooled low pressure loop EGR was realized by mixing with a part of the exhaust gas. Pilot injection is effective to suppress rapid combustion due to the lower ignitability of the alcohol and vegetable oil blends. The effects of reductions in the intake oxygen concentration with cooled EGR and changes in the fuel injection pressure were investigated for the blended fuels.
Journal Article

ANALYSIS OF NOx CONVERSION USING A QUASI 2-D NH3-SCR MODEL WITH DETAILED REACTIONS

2011-08-30
2011-01-2081
We have constructed a quasi-2-dimensional NH₃-SCR model with detailed surface reactions to analyze the NOx conversion mechanism and reasons for its inhibition at low temperatures. The model consists of seven detailed surface reactions proposed by Grozzale et al., and calculates longitudinal gas flow, gas phase-catalyst phase mass transfer, and mass diffusion within the catalyst phase in the depth dimension. Using the model, we have analyzed the results of pulsed ammonia (NH₃) feed tests at various catalyst temperatures, and results show that ammonium nitrate (NH₄NO₃) is the inhibitor in NH₃-SCR reactions at low temperatures. In addition, we found that cutting the supply of NH₃ causes decomposition of NH₄NO₃, providing surface ammonia (NH₄+), which rapidly reacts with adjacent NOx, leading to an instantaneous rise in nitrogen (N₂) formation.
Technical Paper

Detailed Analysis of Particulate Matter Emitted from Biofueled Diesel Combustion with High EGR

2009-04-20
2009-01-0483
Difference of engine combustion characteristics, species and amount of exhaust gas and PM (particulate matter consisted of SOF and Soot and Ash), and especially PM oxidation characteristics were studied when diesel fuel or bio-fuel, here PME (palm oil methyl ester) as an example, was used as a fuel. The fueling rate was adjusted to obtain the same torque for both fuels and engine was operated under several range of EGR (Exhaust Gas Recirculation) ratio. Under such conditions, PME showed shorter ignition delay time and lower R.H.R (rate of heat release) under 0-40% EGR ratio. With respect to engine exhaust gas species, CO, NO, THC and HCHO, CH3CHO concentration was almost the same when the EGR ratio is higher than 35% (Intake-Air/Fuel: A/F=20). However, PME also showed lower exhaust gas emission when the EGR ratio is higher than 30%.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics

2002-05-06
2002-01-1750
A numerical study was carried out to investigate combustion characteristics of a dual-fuel gas diesel engine, using a multi-dimensional model combined with detailed chemical kinetics, including 43 chemical species and 173 elementary reactions. In calculations, the effects of initial temperature, EGR ratios on ignition, and combustion were examined. The results indicated EGR combined with intake preheating can favorably reduced NOx and THC emissions simultaneously. This can be explained by the fact that combustion mechanism is changed from flame propagation to HCCl like combustion.
Technical Paper

Development and Improvement of an Ultra Lightweight Hybrid Electric Vehicle

2003-03-03
2003-01-2011
An experimental ultra lightweight compact vehicle named “the Waseda Future Vehicle” has been designed and developed, aiming at a simultaneous achievement of low exhaust gas emissions, high fuel economy and driving performance. The vehicle is powered by a dual-type hybrid system having a SI engine, electric motor and generator. A high performance lithium-ion battery unit is used for electricity storage. A variety of driving cycles were reproduced using the hybrid vehicle on a chassis dynamometer. By changing the logics and parameters in the electronic control unit (ECU) of the engine, a significant improvement in emissions was possible, achieving a very high fuel economy of 34 km/h at the Japanese 10-15 drive mode. At the same time, a numerical simulation model has been developed to predict fuel economy. This would be very useful in determining design factors and optimizing operating conditions in the hybrid power system.
X