Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Directional Response of Partially Filled Tank vehicles

The directional dynamics of partially filled articulated tank vehicles is investigated via computer simulation assuming constant forward velocity. The directional response characteristics of an articulated tank vehicle is investigated for various steering manoeuvres and compared to that of an equivalent rigid cargo vehicle to demonstrate the destabilizing effects of liquid load shift. It is concluded that during a steady steer input, the distribution of cornering forces caused by the liquid load shift yields considerable deviation of the path followed by the tank vehicle. The lateral load shift encountered in a partially filled tank vehicle during lane change and evasive type of highway manoeuvres gives rise to roll and lateral instabilities.
Technical Paper

Influence of Tank Design Factors on the Rollover Threshold of Partially Filled Tank Vehicles

General purpose tank vehicles often carry partial loads in view of variations in the weight density of the liquid cargo and are thus subject to slosh loads during highway manoeuvres. The magnitude of destabilizing forces and moments due to liquid slosh is strongly related to a number of vehicle and tank design factors, such as tires, suspension, articulation mechanism, weights and dimensions, tank geometry and fill level. The rollover threshold of the tank vehicle is compared to that of an equivalent rigid cargo vehicle to demonstrate the destabilizing effects of liquid slosh. The rollover threshold of the tank vehicle is evaluated for a number of tank design factors. Influence of tank size and cross-section on the rollover threshold of the tank vehicles is investigated. The study concludes that the lateral load shift and thus the rollover threshold is strongly related to the tank cross-section geometry.
Technical Paper

Optimal Suspension Damping for Improved Driver- and Road- Friendliness of Urban Buses

Dynamic interactions of urban buses with urban roads are investigated in view of the vibration environment for the driver and dynamic tire forces transmitted to the roads. The static and dynamic properties of suspension component and tires are characterized in the laboratory over a wide range of operating conditions. The measured data is used to derive nonlinear models of the suspension component, and a tire model as a function of the normal load and inflation pressure. The component models are integrated to study the vertical and roll dynamics of front and rear axles of the conventional and modern low floor designs of urban buses. The resulting nonlinear vehicle models are thoroughly validated using the fieldmeasured data on the ride vibration and tire force response of the buses.
Technical Paper

Directional Dynamics of a Partly-Filled Tank Vehicle Under Braking and Steering

Dynamic behavior of a partly-filled liquid cargo vehicle subject to simultaneous application of cornering and braking maneuvers is investigated through computer simulation. A three-dimensional quasi-dynamic model of a partly-filled tank of circular cross-section is developed and integrated into a comprehensive three-dimensional model of an articulated vehicle to study its directional response under varying steering and braking inputs, fill volumes and road surface friction. The liquid load movement encountered under combined steering and braking is expressed in terms of variations in the instantaneous c.g. coordinates and mass moments of inertia of the liquid bulk, assuming negligible influence of fundamental slosh frequency and viscous effects.
Journal Article

Performance Enhancement of Road Vehicles Using Active Independent Front Steering (AIFS)

Technological developments in road vehicles over the last two decades have received considerable attention towards pushing the safe performance limits to their ultimate levels. Towards this goal, Active Front Steering (AFS) and Direct Yaw-moment Control (DYC) systems have been widely investigated. AFS systems introduce corrective steering angles to conventional system in order to realize target handling response for a given speed and steering input. It is thus expected that such an action under severe maneuvers may cause one tire to reach saturation while the other tire may be capable of developing more force. This study, therefore, proposes an Active Independent Front Steering (AIFS) system capable of controlling a wheel independently. At low speeds, the proposed AIFS system will modify the steer angle with speeds while maintaining pro-ackerman geometry similar to an AFS system. In doing so, it will realize a target response defined as one provided by a neutral steer system.
Technical Paper

Influence of Partition Location on the Braking Performance of a Partially-Filled Tank Truck

The longitudinal load transfer encountered in a partly-filled ellipsoidal tank truck, subject to a straight-line braking maneuver, is investigated as a function of the location of partition walls, deceleration and the fill level. The response characteristics of the truck equipped with a compartmented tank are evaluated in terms of dynamic load transfer, stopping distance, braking time and time lag between the front and rear axle wheel lock-up. The braking response characteristics are derived as a function of the load shift, and number and location of partition walls. Road tests were performed on an airport fuel truck, equipped with a 3 m long tank with two movable partition walls. The simulation results derived from the test vehicle model are compared to the road test data to demonstrate the validity of the analytical model. The results show good correlation with the measured data acquired under straight-line braking maneuvers performed under different fill levels and initial speeds.