Refine Your Search

Topic

Search Results

Standard

Engine and Transmission Dipstick Marking

1977-08-01
HISTORICAL
J614_197708
This SAE Recommended Practice provides information useful in the marking of engine and transmission dipsticks used for fluid level indication.
Standard

Sleeve Type Half Bearings

1978-11-01
HISTORICAL
J506B_197811
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Sleeve Type Half Bearings

2011-06-10
CURRENT
J506_201106
This SAE Standard defines the normal dimensions, dimensioning practice, tolerances, specialized measurement techniques, and glossary of terms for bearing inserts commonly used in reciprocating machinery. The standard sizes cover a range which permits a designer to employ, in proper proportion, the durability and lubrication requirements of each application, while utilizing the forming and machining practices common in manufacture of sleeve type half bearings. Not included are considerations of hydrodynamic lubrication analysis or mechanical stress factors of associated machine structural parts which determine the nominal sizes to be used, selection of bearing material as related to load carrying capacity, and economics of manufacture. For information concerning materials, see SAE J459 and SAE J460. These suggested sizes provide guidelines which may result in minimal costs of tooling but do not necessarily represent items which can be ordered from stock.
Standard

Engine Coolant Pump Seals

2002-10-25
CURRENT
J780_200210
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

Engine Coolant Pump Seals

1984-04-01
HISTORICAL
J780_198404
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

Engine Coolant Pump Seals

1978-11-01
HISTORICAL
J780A_197811
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

Engine Coolant Pump Seals

2000-11-07
HISTORICAL
J780_200011
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

Engine Coolant Pump Seals

1990-06-01
HISTORICAL
J780_199006
This SAE Standard outlines physical dimensions and nomenclature for the sizes of seals commonly used in engine coolant pumps of automotive type engines. Its purpose is to define a standard envelope to accommodate installation of various seal designs and to promote uniformity in seal nomenclature. (See Figures 1 to 5.)
Standard

Flywheels for Two-Plate Spring-Loaded Clutches

1993-12-01
HISTORICAL
J619_199312
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for dry spring-loaded clutches. Clutches to fit flywheels with configurations per this recommended practice may not be commercially available. Availability should be ascertained prior to flywheel design (see Figure 1 and Table 1).
Standard

Flywheels for Two-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J619_201205
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for dry spring-loaded clutches. Clutches to fit flywheels with configurations per this document may not be commercially available. Availability should be ascertained prior to flywheel design Figure 1 and Table 1A.
Standard

Engine Foot Mounting (Front and Rear)

1978-06-01
HISTORICAL
J616C_197806
This SAE Recommended Practice covers foot type mounting dimensions for engines intended for installation on subbases (See Table 1 and Figure 1).
Standard

Engine Mountings

1995-07-01
HISTORICAL
J615_199507
This SAE Standard defines engine mounting dimensions for industry standardization and interchangeability. Table 1 and Figure 1 are dimensions for arm type mountings. Table 2 and Figure 2 are for side pad mountings. For engine housing SAE flange dimensions, see SAE J617. For engine foot type mountings (front and rear), see SAE J616.
Standard

Engine Mountings

2008-07-21
CURRENT
J615_200807
This SAE Standard defines engine mounting dimensions for industry standardization and interchangeability. Table 1 and Figure 1 are dimensions for arm type mountings. Table 2 and Figure 2 are for side pad mountings. For engine housing SAE flange dimensions, see SAE J617. For engine foot type mountings (front and rear), see SAE J616.
Standard

Engine Mountings

1985-07-01
HISTORICAL
J615_198507
This SAE Standard defines engine mounting dimensions for industry standardization and interchangeability. Table 1 and Figure 1 are dimensions for arm type mountings. Table 2 and Figure 2 are for side pad mountings. For engine housing SAE flange dimensions, see SAE J617. For engine foot type mountings (front and rear), see SAE J616.
Standard

Engine Terminology and Nomenclature - General

2011-08-05
CURRENT
J604_201108
This SAE Recommended Practice is applicable to all types of reciprocating engines including two-stroke cycle and free piston engines, and was prepared to facilitate clear understanding and promote uniformity in nomenclature. Modifying adjectives in some cases were omitted for simplicity. However, it is good practice to use adjectives when they add to clarity and understanding.
Standard

Industrial Power Take-Offs With Driving Ring-Type Overcenter Clutches

2012-10-23
CURRENT
J621_201210
This SAE Standard defines installation dimensions of industrial power take-offs with driving ring-type overcenter clutches. Table 1 and Figure 1 give dimensions for power take-offs. For dimensions and tolerances of power take-off flanges and flywheels, see SAE J617 and J620, respectively.
Standard

Automatic Transmission Hydraulic Control Systems - Terminology

2011-06-13
CURRENT
J648_201106
The following is a list of the most common terminology used in describing hydraulic control systems. The hydraulic control system of an automatic transmission may include oil pumps, pressure regulator, governor, and control valves.
Standard

Spark Arrester Test Procedure for Large Size Engines

2013-03-26
CURRENT
J342_201303
This SAE Recommended Practice establishes equipment and procedures for the evaluation of the effectiveness and other performance characteristics of spark arresters or turbochargers used on the exhaust system of large engines normally used in a railroad locomotive, stationary power plant, and other similar applications. This document does not cover applications requiring flame arresting, exhaust gas cooling, or isolation from explosive gases. Two test methods are presented: a laboratory test using ambient air (cold test) and an engine test using exhaust gases (hot test). The hot test is preferred. Arresters tested by the provisions of this document can be expected to perform as tested when tilted no more than 45 degrees from their normal position. Test results from a spark arrester or turbocharger evaluated by the hot test can be applied to different engines of similar design, provided the data shows it to be effective in the applicable flow ranges.
Standard

Manual Transmission and Transaxle Efficiency and Parasitic Loss Measurement

2011-09-02
CURRENT
J2453_201109
Because of the intense focus on CAFE and fuel emission standards, optimization of the automobile drivetrain is imperative. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies the dynamometer test procedure which maps a manual transmission’s efficiency. The document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine “in-gear” transmission efficiency. The second procedure measures parasitic losses experienced while in neutral at nominal idling speeds and also churning losses while in gear. The application of this document is intended for passenger car and light truck. All references to transmissions throughout this document include transaxles.
Standard

Crankcase Emission Control Test Code

1964-06-01
HISTORICAL
J900_196406
The purpose of this SAE STandard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a. The flow rate of the blowby of an engine; b. The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology; 4. Test Equipment; 5. Test Procedures; 6. Information and Data to be Recorded; 7. Data Analysis; 8. Presentation of Information and Data.
X