Refine Your Search

Topic

Author

Search Results

Technical Paper

Experimental Investigation into HCCI Combustion Using Gasoline and Diesel Blended Fuels

2005-10-24
2005-01-3733
Gasoline and diesel, the two fuels with very different characteristics and with wide availability for conventional engine use, were blended as a HCCI engine fuel. Gasoline, with high volatility, easy vaporization and mixture formation, is used to form the homogeneous charge. Diesel fuel which has good ignitability and fast combustion at the conditions predominating in the HCCI environment, is used to dominate the auto-ignition and restrain the knocking combustion. It is expected that these two different fuels with opposite but complementary properties can be used to reach a good compromise in HCCI combustion. Experiments, conducted with moderate compression ratios (CR) and using two modes of HCCI control, i.e. intake heating with CR 15.0 and negative valve overlap (NVO) with CR 10.4, yielded results that prove this expectation.
Technical Paper

Residual Gas Trapping for Natural Gas HCCI

2004-06-08
2004-01-1973
With the high auto ignition temperature of natural gas, various approaches such as high compression ratios and/or intake charge heating are required for auto ignition. Another approach utilizes the trapping of internal residual gas (as used before in gasoline controlled auto ignition engines), to lower the thermal requirements for the auto ignition process in natural gas. In the present work, the achievable engine load range is controlled by the degree of internal trapping of exhaust gas supplemented by intake charge heating. Special valve strategies were used to control the internal retention of exhaust gas. Significant differences in the degree of valve overlap were necessary when compared to gasoline operation at the same speeds and loads, resulting in lower amounts of residual gas observed. The dilution effect of residual gas trapping is hence reduced, resulting in higher NOx emissions for the stoichiometric air/fuel ratio operation as compared to gasoline.
Technical Paper

Effect of Hydrogen Addition on Natural Gas HCCI Combustion

2004-06-08
2004-01-1972
Natural gas has a high auto-ignition temperature, requiring high compression ratios and/or intake charge heating to achieve HCCI (homogeneous charge compression ignition) engine operation. Previous work by the authors has shown that hydrogen addition improves combustion stability in various difficult combustion conditions. It is shown here that hydrogen, together with residual gas trapping, helps also in lowering the intake temperature required for HCCI. It has been argued in literature that the addition of hydrogen advances the start of combustion in the cylinder. This would translate into the lowering of the minimum intake temperature required for auto-ignition to occur during the compression stroke. The experimental results of this work show that, with hydrogen replacing part of the fuel, a decrease in intake air temperature requirement is observed for a range of engine loads, with larger reductions in temperature noted at lower loads.
Technical Paper

Effect of inlet valve timing on boosted gasoline HCCI with residual gas trapping

2005-05-11
2005-01-2136
With boosted HCCI operation on gasoline using residual gas trapping, the amount of residuals was found to be of importance in determining the boundaries of stable combustion at various boost pressures. This paper represents a development of this approach by concentrating on the effects of inlet valve events on the parameters of boosted HCCI combustion with residual gas trapping. It was found that an optimum inlet valve timing could be found in order to minimize NOx emissions. When the valve timing is significantly advanced or retarded away from this optimum, NOx emissions increase due to the richer air / fuel ratios required for stable combustion. These richer conditions are necessary as a result of either the trapped residual gases becoming cooled in early backflow or because of lowering of the effective compression ratio. The paper also examines the feasibility of using inlet valve timing as a method of controlling the combustion phasing for boosted HCCI with residual gas trapping.
Technical Paper

An Experimental Study of Combustion Initiation and development in an Optical HCCI Engine

2005-05-11
2005-01-2129
The major characteristics of the combustion in Homogeneous Charge Compression Ignition (HCCI) engines, irrespective of the technological strategy used to enable the ‘controlled auto-ignition’, are that the mixture of fuel and air is preferably premixed and largely homogeneous. Ignition tends to take place simultaneously at multiple points and there is no bulk flame propagation as in conventional spark-ignition (SI) engines. This paper presents an experimental study of flame development in an optical engine operating in HCCI combustion mode. High resolution and high-speed charge coupled device (CCD) cameras were used to take images of the flame during the combustion process. Fuels include gasoline, natural gas (NG) and hydrogen addition to NG all at stoichiometric conditions, permitting the investigation of combustion development for each fuel. The flame imaging data was supplemented by simultaneously recorded in-cylinder pressure data.
Technical Paper

Applying boosting to gasoline HCCI operation with residual gas trapping

2005-05-11
2005-01-2121
The application of Homogeneous Charge Compression Ignition (HCCI) combustion to naturally aspirated engines has shown a much reduced usable load range as compared to spark ignition (SI) engines. The approach documented here applies inlet charge boosting to gasoline HCCI operation on an engine configuration that is typical for SI gasoline engines, in conjunction with residual gas trapping. The latter helps to retain the benefits of much reduced requirement for external heating. In the present work, the achievable engine load range is controlled by the level of boost pressure while varying the amount of trapped residual gas. In addition, it was found that there is a maximum amount of boost that can be applied without intake heating for any given amount of trapped residuals. NOx emissions decrease with increasing amounts of trapped residual.
Technical Paper

Study on an Electronically Controlled Common-Rail Injection System for Liquefied Alternative Fuels

2005-05-11
2005-01-2085
Liquefied alternative fuels offer great potential benefits in reducing exhaust emissions and improving fuel economy of automotive engines. In order to achieve the best performance of the engine running with such fuels, it is critical to have an appropriate fuel system. In the present work, a new electronically controlled common-rail injection system has been specially designed and tested for the direct injection of liquefied alternative fuels, since a conventional pump-line-injector injection system in the conventional diesel engine was not suitable for the purpose. Experimental work has been carried out to examine and improve matching of the fuel injection system on a new fuel injection pump test bench. The preliminary engine bench test has demonstrated that this arrangement meets the requirement for the operating characteristics of a fuel injection system in a direct injection diesel engine operating with dimethyl ether (DME).
Technical Paper

Effect of the Pre-Chamber Orifice Geometry on Ignition and Flame Propagation with a Natural Gas Spark Plug

2017-10-08
2017-01-2338
Natural gas is one of the promising alternative fuels due to the low cost, worldwide availability, high knock resistance and low carbon content. Ignition quality is a key factor influencing the combustion performance in natural gas engines. In this study, the effect of pre-chamber geometry on the ignition process and flame propagation was studied under varied initial mixture temperatures and equivalence ratios. The pre-chambers with orifices in different shapes (circular and slit) were investigated. Schlieren method was adopted to acquire the flame propagation. The results show that under the same cross-section area, the slit pre-chamber can accelerate the flame propagation in the early stages. In the most of the cases, the penetration length of the flame jet and flame area development are higher in the early stages of combustion.
Technical Paper

Characterizing Propane Flash Boiling Spray from Multi-Hole GDI Injector

2018-04-03
2018-01-0278
In this research, propane flash boiling sprays discharged from a five-hole gasoline direct injector were studied in a constant volume vessel. The fuel temperature (Tfuel) ranged from 30 °C to 90 °C, and the ambient pressure (Pamb) varied from 0.05 bar to 11.0 bar. Different flash boiling spray behavior compared to that under sub-atmospheric conditions was found at high Pamb. Specifically, at the sub-atmospheric pressures, the individual flashing jets merged into one single jet due to the strong spray collapse. In contrast, at Pamb above 3.0 bar and Tfuel above 50 °C, the spray collapse was mitigated and the flashing jets were separated from each other. Further analyses revealed that the mitigation of spray collapse at high Pamb was ascribed to the suppression of jet expansion. In addition, it was found that the spray structure was much different at similar Rp, indicating that Rp lacked the generality in describing the structure of flash boiling sprays.
Technical Paper

Effects of Aromatic and Olefin on the Formations of PAHs in GDI Engine

2017-10-08
2017-01-2390
In this paper, the impacts of Aromatic and Olefin on the formation of poly-aromatic hydrocarbons (PAHs) in the gasoline direct injection (GDI) engine were experimentally and numerically investigated. The objective of this study is to describe the formation process of the soot precursors including one ring to four ring aromatics (A1-A4). In order to better understand the effects of the fuel properties on the formations of PAHs. Three types of fuels, namely base gasoline, gasoline with higher aromatics content, and gasoline with higher olefin content were experimentally studied. At the same time, these aspects were also numerically investigated in the CHEMKIN code by using premixed laminar flame model and surrogated fuels. The results show that higher aromatics content in gasoline will lead to much higher PAHs formation. Similar trend was also found in the gasoline with higher olefin content.
Journal Article

Spray Characteristics Study of DMF Using Phase Doppler Particle Analyzer

2010-05-05
2010-01-1505
2,5-dimethylfuran (DMF) is currently regarded as a potential alternative fuel to gasoline due to the development of new production technology. In this paper, the spray characteristics of DMF and its blends with gasoline were studied from a high pressure direct injection gasoline injector using the shadowgraph and Phase Doppler Particle Analyzer (PDPA) techniques, This includes the spray penetration, droplet velocity and size distribution of the various mixtures. In parallel commercial gasoline and ethanol were measured in order to compare the characteristics of DMF. A total of 52 points were measured along the spray so that the experimental results could be used for subsequent numerical modeling. In summary, the experimental results showed that DMF and its blends have similar spray properties to gasoline, compared to ethanol. The droplet size of DMF is generally smaller than ethanol and decreases faster with the increase of injection pressure.
Journal Article

The Particle Emissions Characteristics of a Light Duty Diesel Engine with 10% Alternative Fuel Blends

2010-05-05
2010-01-1556
In this study, the particle emission characteristics of 10% alternative diesel fuel blends (Rapeseed Methyl Ester and Gas-to-Liquid) were investigated through the tests carried out on a light duty common-rail Euro 4 diesel engine. Under steady engine conditions, the study focused on particle number concentration and size distribution, to comply with the particle metrics of the European Emission Regulations (Regulation NO 715/2007, amended by 692/2008 and 595/2009). The non-volatile particle characteristics during the engine warming up were also investigated. They indicated that without any modification to the engine, adding selected alternative fuels, even at a low percentage, can result in a noticeable reduction of the total particle numbers; however, the number of nucleation mode particles can increase in certain cases.
Technical Paper

Numerical Investigation of GDI Injector Nozzle Geometry on Spray Characteristics

2015-09-01
2015-01-1906
The large eddy simulation (LES) with Volume of Fluid (VOF) interface tracking method in Ansys-FLUENT has been used to study the effects of nozzle hole geometrical parameters on gasoline direct injection (GDI) fuel injectors, namely the effect of inner hole length/diameter (L/D) ratio and counter-bore diameters on near field spray characteristics. Using iso-octane as a model fuel at the fuel injection pressure of 200 bar, the results showed that the L/D ratio variation of the inner hole has a more significant influence on the spray characteristics than the counter-bore diameter variation. Reducing the L/D ratio effectively increases the mass flow rate, velocity, spray angle and reduces the droplet size and breakup length. The increased spray angle results in wall impingements inside the counter-bore cavity, particularly for L/D=1 which can potentially lead to increased deposit accumulation inside fuel injectors.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Journal Article

Research on Unregulated Emissions from an Alcohols-Gasoline Blend Vehicle Using FTIR, HPLC and GC-MS Measuring Methods

2013-04-08
2013-01-1345
Unregulated emissions have become an important factor restricting the development of methanol and ethanol alternative alcohols fuels. Using two light-duty vehicles fuelled with pure gasoline, gasoline blend of 10% and 20% volume fraction of ethanol fuels, gasoline blend of 15% and 30% volume fraction of methanol fuels, New European Driving Cycle (NEDC) emission tests were carried on a chassis dynamometer according to ECE R83-05. High performance liquid chromatography (HPLC), Gas chromatography - Mass spectrometry (GC-MS), Fourier transform infrared spectrometer (FTIR) were used to measure methanol, formaldehyde, acetaldehyde, acetone, benzene, toluene, xylene, ethylene, propylene, 1,3-butadiene and isobutene emissions in the exhaust during the NEDC.
Technical Paper

Combustion and Emission Characteristics of WDF in a Light-Duty Diesel Engine over Wide Load Range

2017-10-08
2017-01-2265
Wide Distillation Fuel (WDF) refers to the fuels with a distillation range from initial boiling point of gasoline to final boiling point of diesel. Recent experimental results have shown WDF by blending 50% gasoline and 50% diesel (G50) exhibits much lower soot emissions than diesel at medium load with similar thermal efficiency. However, the engine performances fueled by G50 at both low load end and high load end are still unknown. In this study, the combustion and emission characteristics of G50 and diesel are compared over a wide load range from 0.2 MPa IMEP to 1.4 MPa IMEP at a light-duty diesel engine. The results shown that at 0.2 MPa IMEP, G50 exhibits low combustion stability and thermal efficiency. With the increase of load, the poor combustion quality of G50 is improved. G50 can achieve soot-free combustion up to 1.0 MPa IMEP, while diesel cannot.
Journal Article

Dual-Injection as a Knock Mitigation Strategy Using Pure Ethanol and Methanol

2012-04-16
2012-01-1152
For spark ignition (SI) engines, the optimum spark timing is crucial for maximum efficiency. However, as the spark timing is advanced, so the propensity to knock increases, thus compromising efficiency. One method to suppress knock is to use high octane fuel additives. However, the blend ratio of these additives cannot be varied on demand. Therefore, with the advent of aggressive downsizing, new knock mitigation techniques are required. Fortuitously, there are two well-known lower alcohols which exhibit attractive knock mitigation properties: ethanol and methanol. Both not only have high octane ratings, but also result in greater charge-cooling than with gasoline. In the current work, the authors have exploited these attractive properties with the dual-injection, or the dual-fuel concept (gasoline in PFI and fuel additive in DI) using pure ethanol and methanol.
Technical Paper

Homogeneous Charge Combustion and Emissions of Ethanol Ignited by Pilot Diesel on Diesel Engines

2004-03-08
2004-01-0094
Homogeneous charge combustion and emissions of ethanol ignited by pilot diesel fuel were investigated on a two-cylinder diesel engine. The results show that emissions depend on loads and ethanol volume fraction. At low loads, ethanol has little effects on smoke. With the increase of ethanol, NOx decreases, but CO emissions increase. At high loads, smoke emissions reduce greatly with increasing ethanol, but NOx and total hydrocarbon (THC) emissions increase. With the increase of ethanol, ignition delays, combustion duration shortens. The maximum rates of heat release for the fuel containing 10 vol% ethanol (E10) and 30 vol% ethanol (E30) increase. Brake specific energy consumption (BSEC) of E10 and E30 is improved slightly only at full loads. Compared to smoke emissions obtained on the same engine using ethanol blended diesel fuels, the tendency of smoke reduction is similar to that of homogeneous charge combustion of ethanol at the same operating conditions.
Technical Paper

Investigations into Multiple Premixed Compression Ignition Mode Fuelled with Different Mixtures of Gasoline and Diesel

2015-04-14
2015-01-0833
A study of Multiple Premixed Compression Ignition (MPCI) with mixtures of gasoline and diesel is performed on a light-duty single cylinder diesel engine. The engine is operated at a speed of 1600rpm with the same fuel mass per cycle. By keeping the same intake pressure and EGR ratio, the influence of different blending ratios in gasoline and diesel mixtures (90vol%, 80vol% and 70vol% gasoline) is investigated. Combustion and emission characteristics are compared by sweeping the first (−95 ∼ −35deg ATDC) and the second injection timing (−1 ∼ 9deg ATDC) with an injection split ratio of 80/20 and an injection pressure of 80MPa. The results show that compared with diesel combustion, the gasoline and diesel mixtures can reduce NOx and soot emissions simultaneously while maintaining or achieving even higher indicated thermal efficiency, but the HC and CO emissions are high for the mixtures.
Technical Paper

An Optical Study on the Combustion of Gasoline/PODEn Blends in a Constant Volume Vessel

2018-09-10
2018-01-1748
Polyoxymethylene dimethyl ethers (PODEn) have high cetane number, high oxygen content and high volatility, therefore can be added to gasoline to optimize the performance and soot emission of Gasoline Compression Ignition (GCI) combustion. High speed imaging was used to investigate the spray and combustion process of gasoline/PODEn blends (PODEn volume fraction 0%-30%) under various ambient conditions and injection strategies in a constant volume vessel. Results showed that with an increase of PODEn proportion from 10% to 30%, liquid-phase penetration of the spray increased slightly, ignition delay decreased from 3.8 ms to 2.0 ms and flame lift off length decreased 29.4%, causing a significant increase of the flame luminance. For blends with 20% PODEn, when ambient temperature decreased from 893 K to 823 K, the ignition delay increased 1.3 ms and the flame luminance got lower.
X