Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Study of Fuel Auto-ignitability on Premixed Compression Ignition Characteristics

2008-04-14
2008-01-0062
It has been clarified that diesel fuel properties have a great effect on the exhaust emissions and fuel consumption of a conventional diesel combustion regime. And as other diesel combustion regimes are applied in order to improve exhaust emissions and fuel consumption, it can be supposed that the fuel properties also have significant effects. The purpose of this study is to propose the optimum diesel fuel properties for a premixed compression ignition (PCI) combustion regime. In this paper, the effect of the auto-ignitability of diesel fuels on exhaust emissions and fuel consumption was evaluated using a heavy-duty single-cylinder test engine. In all experiments, fuels were injected using an electronically controlled, common-rail diesel fuel injector, and most experiments were conducted under high EGR conditions in order to reduce NOx emissions.
Technical Paper

Effects of Particle Size Distribution on Soot Particle Measurement by Transmissive Light Extinction Method

1986-09-01
861234
This paper presents the result of a theoretical study on the effects of particle size distribution on the soot particle measurement method. The principal equations are rear-ranged into a concise form, and a wide variation of size distribution functions are introduced to calculate the effects. It was found that the mean extinction coefficient is very weakly dependent on the shape of size distribution functions and can be approximated to that for the Sauter mean diameter with insignificant error. The volumetric density of soot particles can be obtained by light transmittance measurement on a single wavelength, and this is affected only by the estimated value for the Sauter mean diameter. The error due to the estimation is under 5%. On the other hand, it was found that the light transmittance measurement is insufficient to obtain size distribution or the Sauter mean diameter of soot particles.
Technical Paper

Measurement of Trace Levels of Harmful Substances Emitted from a DME DI Diesel Engine

2005-05-11
2005-01-2202
In this report, trace levels of harmful substances, such as formaldehyde, acetaldehyde, SO2, benzene and so on, emitted from a DME fueled direct injection (DI) compression ignition (CI) engine were measured using a Fourier Transform Infrared (FTIR) emission analyzer. Results showed that the NO portion of NOx emissions with DME exceeded diesel fuel operation levels. DME fueling caused greater amounts of water than with diesel fuel operation. DME fueling was also associated with higher formaldehyde emissions than with diesel fuel operation. However, using an oxidation catalyst, formaldehyde could be decreased to a negligible level.
Technical Paper

Research and Development of a Medium Duty DME Truck

2005-05-11
2005-01-2194
Dimethyl ether (DME) has been attracting notable attention as a clean alternative fuel for diesel engines. The authors developed a medium duty DME truck, and investigated aspects of vehicle performance such as engine power, exhaust characteristics, fuel consumption, noise, in-vehicle systems, and so on. Results indicated that higher engine torque and power could be achieved with DME compared to diesel fuel operation of the base engine at any engine speed. Results also showed that emissions decreased dramatically, to 27% for NOx, 74% for HC, 95% for CO and 94% for PM (Particulate Matter) compared to maximum allowed Japanese 2003 emission regulations. The operating noise of the DME vehicle was slightly lower than the base vehicle with diesel fuel, because the combustion noise with DME was decreased compared to with diesel fuel operation. The DME vehicle was given a public license plate in October 2004, after which running test continued on public roads and on a test course.
Technical Paper

Fuel Characteristics Evaluation of GTL for DI Diesel Engine

2004-03-08
2004-01-0088
In this study, advantages of GTL fueled DI diesel engine were observed, then, some cautionary areas, notably the aptitude for sealing materials, were investigated. Some advantages of using GTL as a diesel engine fuel include reduction of soot emission levels, power output and fuel consumption with GTL to conventional diesel fuel operation is equivalent, super-low sulfur content of GTL and its liquid state at normal temperature and pressure. However, there are some problems with putting GTL fuel on the market, such as lubricity, aptitude for sealing materials, high cetane index and high pour point. It is necessary to use additives to improve GTL's lubricity, and selecting the most appropriate type of lubricity improver is also important. The influence of GTL on the swelling properties of standard rubber materials seem basically the same, but it is necessary to notice on used rubbers.
Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

Dual-Fuel Diesel Engine Using Butane

1992-02-01
920690
The authors tried to use LP gas, mainly butane, as the main fuel of diesel engines to reduce soot and to maintain high thermal efficiency. LP gas was injected in the direction of the intake valve directly as a spray to prevent knocking and to preserve high charging efficiency. The newly developed electronic fuel injection provided accurate fuel control and injection timing. As a result, the dual-fuel operation produced high thermal efficiency almost identical to that of diesel engines. Soot in engine exhaust was almost negligible. Three quarters of maximum output was obtained with butane, and only small amount of gas oil for idling, in spite of an high compression ratio of 17 for gas engines. Increasing the proportion of gas oil resulted in maximum output from a diesel engine and almost no soot output.
Technical Paper

The Dependence of Carbon/Hydrogen Ratio on Soot Particle Size

1992-02-01
920689
This paper deals with the process regarding how dehydrogenation of soot particles takes place. The measured carbon/hydrogen ratios plotted against mean-diameter of soots fall on a straight line passing through the origin. It is shown that in the course of soot particle growth CM ratio increases linearly with the particle diameter: D. This is an indication of the fact that the number of carbon grows in proportion to D3, whereas that of hydrogen is proportional to D2. It is there by concluded that hydrogen sit only on surface of soot particles.
Technical Paper

Performance and Emissions of an LPG Lean-Burn Engine for Heavy Duty Vehicles

1999-05-03
1999-01-1513
Performance and emissions of an LPG lean burn engine for heavy duty vehicles were measured. The piston cavity, swirl ratio, propane - butane fuel ratio, and EGR were varied to investigate their effects on combustion, and thus engine performance. Three piston cavities were tested: a circular flat-bottomed cavity with sloped walls (called the “bathtub” cavity), a round bottomed cavity (called the “dog dish” cavity), and a special high-turbulence cavity (called the “nebula” cavity). Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. It was capable of maintaining leaner combustion, thus resulting in the lowest NOx emissions. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. In general, as the propane composition increased, cyclic variation fell, NOx emissions increased, and thermal efficiency was improved.
Technical Paper

Effects of Initial In-Cylinder Flow Field on Mixture Formation in a Premixed Compression Ignition Engine

2000-03-06
2000-01-0331
To find more effective lean mixture preparation methods for smokeless and low NOx combustion, a numerical study of the effects of in-cylinder flow field before injection on mixture formation in a premixed compression ignition engine was conducted. Premixed compression ignition combustion is a very attractive method to reduce both NOx and soot emissions, but it still has some problems, such as high HC and CO emissions. In case of early direct injection, it is important to avoid wall wetting by spray impingement, which can cause higher HC and CO emissions. Since it is not easy to examine the effects of initial flow and injection parameters on mixture formation over the wide range by practical engine tests, a computer program named “GTT (Generalized Tank and Tube)” code was used to simulate the in-cylinder phenomena before autoignition.
Technical Paper

Spray and Exhaust Emission Characteristics of a Biodiesel Engine Operating with the Blend of Plant Oil and DME

2002-03-04
2002-01-0864
As an effective method to solve the global warming and the energy crisis, the research has been carried out for the adaptability of plant oil as an alternative fuel for Diesel engine. But there are the problems of engine performance and exhaust emissions owing to the high viscosity and low volatility, when the plant oil is used as a fuel. In order to eliminate these problems, spray characteristics of the DME (Dimethyl ether) blended plant oil has been examined by using the image processing based on the shadowgraph methodology. Results show that the optimum mixing ratio of the blend is about 50:50 (by weight %). Thereafter, experiments have been conducted with a DI Diesel engine using the DME blended plant oil, and compared the exhaust emissions with Diesel, DME and transesterified fuel operation. From the results, it can be concluded that the combustion characteristics of DME blended plant oil are comparable to Diesel fuel.
Technical Paper

Observation of Flame Propagation in an LPG Lean Burn SI Engine

1999-03-01
1999-01-0570
Using an extended bottom view piston having a quartz window, flame propagation observation and flame contour analysis were carried out to investigate the combustion characteristics of a heavy-duty type LPG lean burn engine. The swirl ratio and piston cavity configuration were varied to investigate their effects on combustion and engine performance. Gradual reduction of NOx but increased hydrocarbon emissions were measured for leaner mixtures compared to the stoichiometric operation. High swirl apparently accelerated the initial flame kernel development, as evidenced by a shorter crank angle interval from the spark ignition to the maximum cylinder pressure. The ‘D’ type cavity, with an increased squish area located below the intake valve, was shown to have the shortest burn duration among the piston cavities tested. The experimental flame propagation observation procedure was shown to be useful for the study of the combustion process in engines.
Technical Paper

Conversion of Nitric Oxide to Nitrogen Dioxide Using Hydrogen Peroxide

2000-06-19
2000-01-1931
Detailed chemical kinetic model of hydrogen peroxide (H2O2) into diesel exhaust gas has been executed to investigate its effect on the removal of nitric oxide(NO) by changing exhaust gas temperature and H2O2 addition amount. Flux analysis has also been done to clarify which reaction mainly affects NO-to-NO2 conversion. From the results of this study, it is shown that the optimal temperature condition to maximize the removal of NO exists near at 500K for OH addition condition, while that for H2O2 addition exists near at 800K. It is also shown that temperature window for the removal of NO becomes widened as the initial temperature of the exhaust gas increases, and NO-to-NO2 conversion rate decreases in proportion to the concentration of hydrocarbon(HC), although that of the total NOx remains the same level regardless of HC concentration. Finally, it is shown that HO2 + NO → NO2 + OH is mainly responsible for NO-to-NO2 conversion.
Technical Paper

Development of LPG SI and CI Engines for Heavy Duty Vehicles

2000-06-12
2000-05-0166
Development of LPG SI and CI engines for heavy duty vehicles has been carried out. In order to measure the performance and emissions of an LPG lean burn SI engine, the piston cavity, swirl ratio, and propane-butane fuel ratio were varied and tested. Compared to the bathtub and dog dish cavities, the nebula type cavity showed the best performance in terms of cyclic variation and combustion duration. High swirl improved combustion by achieving a high thermal efficiency and low NOx emissions. A feasibility study of an LPG DI diesel engine also has been carried out to study the effectiveness of the selected cetane enhancing additives:Di-tertiary-butyl peroxide (DTBP). When more than 5 wt% DTBP was added to the base fuel, stable engine operation over a wide range of engine loads was possible. The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
Technical Paper

Spectroscopic Analysis of Combustion Flame Fueled with Dimethyl Ether (DME)

2003-05-19
2003-01-1797
To better understand the combustion characteristics of DME, emission intensities of DME combustion radicals from a pre-mixed burner flame were measured by a spectroscope and photomultiplier, Results were compared to other fuels, such as methane and butane. Large peaks in the band spectra from pre-mixed and diffusion DME flames were found near 310 nm, 430 nm, and 515 nm, arising from OH, CH and C2, respectively. The DME emission intensities decreased with increasing the equivalence ratio in this study. Notably, the relative decrease in the C2 band spectra peak was greater than that of the OH band. Comparing the pre-mixed DME and butane flames, the butane band spectra peaks were similar in shape, but much stronger than those for DME. However, it was remarkable that CH and C2 band spectra peaks decreased only slightly with increase in equivalence ratio compared to the DME case.
Technical Paper

Characteristics of Aldehydes and VOCs Emission from Off-road Engines

2006-11-13
2006-32-0023
In this study, measurement methods of aldehydes and volatile organic compounds (VOCs) from off-road engine have been investigated. Also, their emission characteristics have been evaluated. By using high-performance liquid chromatograph (HPLC), aldehydes could be measured with small variation. Major aldehydes from off-road engine are formaldehyde and acetaldehyde. Total aldehydes emission is not necessarily low compared to THC emission. The emission characteristics of aldehydes are similar to that of CO, THC and PM. For VOCs sampling, sampling tube with absorbent was better than sampling bag because some kinds of VOCs tend to become absorbed on the sampling bag. Except for 1,3-butadiene, VOCs could be measured with small variation by using gas chromatography-mass spectrometer (GC-MS). Benzene, toluene and xylene were major species found in VOCs. The emission characteristics of VOCs were also similar to ones of CO, THC and PM.
Technical Paper

Engine Performance and Emission Characteristics of DME Diesel Engine With Inline Injection Pump Developed for DME

2004-06-08
2004-01-1863
The engine performance and exhaust characteristics of the DME-powered diesel engine with an injection system developed for DME were investigated. The injection pump is an inline type that can inject double amount of DME fuel compared to the base injection pump because the calorific value of DME is about half lower than that of diesel fuel. The effect of injection timing on engine performances such as thermal efficiency, engine torque, and exhaust characteristics were investigated. Maximum torque and power with DME could be achieved the same or greater level compared to diesel fuel operation. Considering over all engine performances, the best dynamic injection timings without EGR were -3, -3, -6 and -9 deg. ATDC in 1120, 1680, 2240 and 2800 rpm engine speeds respectively in this experiment.
Technical Paper

Spectroscopic Investigation of the Combustion Process in an LPG Lean-burn SI Engine

1999-10-25
1999-01-3510
Band spectrum images for CH, OH and CHO were taken in a heavy duty type LPG lean-burn SI engine, to investigate the combustion process as it pertains to the pollutant formation process in the post flame region. Full spectra and band spectrum flame images were observed with a bottom view single cylinder research engine and two high speed cameras. NOx emissions were also measured for excess air ratios ranging from 1.0 to 1.6. A thermodynamic model, including the detailed chemical kinetic mechanism for LPG and NOx formation reactions, was developed to predict the major reaction species in the post flame region, and NOx emissions during the combustion process. The model qualitatively described the flame images for each band spectrum and could predict the measured NOx emissions very well.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
X