Refine Your Search

Topic

Search Results

Technical Paper

The Microcrystal Structure of Soot Particulates in the Combustion Chamber of Prechamber Type Diesel Engines

1990-09-01
901579
To clarify the microcrystal structure of soot particulate in the combustion chamber, we examined sampling methods which freeze the reaction of sample specimens from the combustion chamber and collected the soot particulates on microgrids. We investigated the microcrystal structure with a high resolution transmission electron microscope. The results were: the particle size distribution and the microcrystal structure of the soot particulates is little different for the cooled freezing method and room temperature sampling. The typical layer plane structure which characterizes graphite carbon is not observed in the exhaust of diesel engines, but some particulates display a somewhat similar layer plane structure. The structure of soot particulate is a turbostratic structure as the electron diffraction patterns show polycrystals. The soot particulates in the combustion chamber is similar to exhaust soot particulates.
Technical Paper

Mechanism of NOx Reduction by Ethanol on a Silver-Base Catalyst

2001-05-07
2001-01-1935
Since there is a trade-off relationship between NOx and particulates in exhaust gas emitted from a diesel engine, simultaneous reduction of the amounts of NOx and particulates in a combustion chamber is difficult. However, the amount of particulates produced in the combustion process could be reduced in a state of almost complete combustion, and the amount of NOx produced during the combustion process could be reduced by the use of a catalyst and reducing agent in the exhaust process. It has been demonstrated that the use of ethanol as a reducing agent on a silver-base catalyst in the presence of oxygen is an effective means for reducing NOx, although the mechanism of the reduction has not been elucidated. Therefore, in the present study, an NOx-reduction apparatus was conducted, and model experiments on NOx reduction were carried out in an atmosphere simulating exhaust gas emitted from a diesel engine and at the same catalyst temperature as that in a combustion chamber.
Technical Paper

Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results

1992-02-01
920465
This paper presents a theoretical and experimental study on the possibility of combustion similarity in differently sized diesel engines. Combustion similarity means that the flow pattern and flame distribution develop similarly in differently sized engines. The study contributes to an understanding and correlating of data which are presently limited to specific engine designs. The theoretical consideration shows the possibility of combustion similarity, and the similarity conditions were identified. To verify the theory, a comparison of experimental data from real engines was performed; and a comparison of results of a three dimensional computer simulation for different engine sizes was also attempted. The results showed good agreement with the theoretical predictions. THE PURPOSE of this research is to determine the possibility of the existence of combustion similarity in differently sized diesel engines, and to propose conditions for realizing model experiments.
Technical Paper

Reduction of Smoke and NOx by Strong Turbulence Generated During the Combustion Process in D.I. Diesel Engines

1992-02-01
920467
This paper presents results of experiments to reduce smoke emitted from direct Injection diesel engines by strong turbulence generated during the combustion process. The turbulence was created by jets of burned gas from an auxiliary chamber installed in the cylinder head. Strong turbulence, which was induced late in the combustion period, enhanced the mixing of air with unburned fuel and soot, resulting in a remarkable reduction of smoke and particulate; NOx did not show any increase with this system, and thermal efficiency was improved at high loads. The paper also shows that the combination of EGR and water injection with this system effectively reduces the both smoke and NOx.
Technical Paper

Catalytic Reduction of NOx in Actual Diesel Engine Exhaust

1992-02-01
920091
Copper ion-exchanged ZSM-5 zeolite catalyst, which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Copper ion-exchanged ZSM-5 zeolite effectively reduced NOx by 25% in normal engine operation, and by 80% when hydrocarbons in the exhaust were increased. Water in the exhaust gas decreased the NOx reduction efficiency, but oxygen and sulfur appeared to have only a small effect. Maximum NOx reduction was observed at 400°C irrespective of hydrocarbon species, and did not decrease with space velocity up to values of 20,000 1/h. THE PURPOSE of this paper is to evaluate the possibilities and problems in catalytic reduction of NOx in actual diesel engine exhaust. Here, a copper ion-exchanged ZSM-5 zeolite (Cu-Z) catalyst was applied to diesel engine exhaust to examine the dependency of the NOx reduction efficiency on temperature and space velocity. The effects of oxygen, water and hydrocarbons were also examined.
Technical Paper

Formation Process of SOF in the Combustion Chamber of IDI Diesel Engines

1993-10-01
932799
Exhaust Particulate emitted from diesel engines is a serious problem form the point of view of the environment and energy saving. Exhaust particulate is consist of dry soot and SOF (soluble organic fraction). To clarify the formation process of SOF in the combustion chamber of diesel engines, first lower temperature column condensed method was investigated. The gas from combustion chamber was collected to the sampling column using this method, and the cracked as well as the condensation polymerized components were analyzed with gas chromatography. The sampling condition of the low temperature column condensation method are length of condensation column 600mm, cooling temperature 198K, and dilution ratio 5. The diesel fuel injected into the combustion chamber, first cracks into lower boiling point hydrocarbons, this is followed by dehydrogenation and formation of benzene ring compounds through condensation polymerization. This is followed by the formation of PAH.
Technical Paper

An Investigation on the Simultaneous Reduction of Particulate and NOx by Controlling Both the Turbulence and the Mixture Formation in DI Diesel Engines

1993-10-01
932797
This paper presents experimental results of the reduction of both particulate and NOx emitted from direct injection diesel engines by a two stage combustion process. The primary combustion is made very rich to reduce NOx and then the particulate is oxidized by strong turbulence generated during the secondary combustion. The rich mixture is formed by low pressure fuel injection and a small cavity combustion chamber configuration. The strong turbulence is generated by a jet of burned gas from an auxiliary chamber installed at the cylinder head. The results showed that NOx was reduced significantly while maintaining fuel consumption and particulate emissions. An investigation was also carried out on the particulate reduction process in the combustion chamber with the turbulence by gas sampling and in-cylinder observation with an optical fiber scope and a high speed camera.
Technical Paper

A Study of a Compression Ignition Methanol Engine with Converted Dimethyl Ether as an Ignition Improver

1992-10-01
922212
Dimethyl ether (DME) can be converted easily from methanol in a catalytic reactor, and it has very good compression ignition characteristics. This paper presents experimental results on a compression ignition methanol engine with DME as an ignition improver. The results show that engine operation is sufficiently smooth with high efficiency without spark or glow plugs. In the experiments, two methods for DME introduction were investigated: an aspiration and a torch ignition method. The aspiration method introduces DME into the intake manifold, and is structurally simple but suffers from poor emission characteristics at partial loads, and a large amount of DME is required for ignition. With the torch ignition method, DME is introduced into a torch ignition chamber during the intake stroke, and significant reductions in both the necessary DME quantity and emissions were obtained. Engine operation was also attempted with DME-dissolved methanol fuel without ignition aids.
Technical Paper

Analysis of NO Formation Characteristics and Control Concepts in Diesel Engines from NO Reaction-Kinetic Considerations

1995-02-01
950215
This paper uses NO Reaction Kinetic to determine NO formation characteristics in diesel engines. The NO formation was calculated by Extended Zel'dovich Reaction Kinetics in a diffusion process. The results show that the NO formation rate is independent of the mixing of the combustion gas, and that internal EGR (combustion gas mixing in a cylinder) has no effect on NO reduction. The paper also shows the potential of two stage combustion, and its effect strongly depends on the time-scale of mixing. Additionally the paper investigates the mechanism of increased NOx emissions in high pressure fuel injection.
Technical Paper

Theory and Experiments on Air-Entrainment in Fuel Sprays and Their Application to Interpret Diesel Combustion Processes

1995-02-01
950447
This paper presents a theory and its experimental validation for air entrainment changes into fuel sprays in DI diesel engines. The theory predicts air entrainment changes for a variety of swirl speeds, number of nozzle holes, nozzle diameters, engine speeds, injection speeds and fuel densities. The formulae of the theory are simple non-dimensional equations, which apply for different sized engines. Experiments were performed to compare theoretical predictions and experimental results in six different engines varying from 85 to 800mm bore. All results showed good agreement with the theoretical predictions for shallow-dish piston engines. However the agreement became poor in the case of deep cavity piston engines. With the theory, it is possible to interpret a variety of combustion phenomena in diesel engines, providing additional understanding of diesel combustion processes.
Technical Paper

Simultaneous Reductions of Smoke and NOx from a DI Diesel Engine with EGR and Dimethyl Carbonate

1995-10-01
952518
Extensive experiments were conducted on a low emission DI diesel engine by using Dimethyl Carbonate (DMC) as an oxygenate fuel additive. The results indicated that smoke reduced almost linearly with fuel oxygen content. Accompanying noticeable reductions of HC and CO were attained, while a small increase in NOx was encountered. The effective reduction in smoke with DMC was maintained with intake charge CO2, which led to low NOx and smoke emissions by the combined use of oxygenated fuel and exhaust gas recirculation (EGR). Further experiments were conducted on an optically accessible combustion bomb and a thermal cracking set-up to study the mechanisms of DMC addition on smoke reduction.
Technical Paper

Study on Exhaust Control Valves and Direct Air-Fuel Injection for Improving Scavenging Process in Two-Stroke Gasoline Engines

1996-02-01
960367
A critical factor in improving performance of crankcase-scavenged two-stroke gasoline engines is to reduce the short-circuiting of the fresh charge to the exhaust in the scavenging process. To achieve this, the authors developed a reciprocating exhaust control valve mechanism and direct air-fuel injection system. This paper investigates the effects of exhaust control valve and direct air-fuel injection in the all aspect of engine performance and exhaust emissions over a wide range of loads and engine speeds. The experimental results indicate that the exhaust control valve and direct air-fuel injection system can improve specific fuel consumption, and that HC emissions can be significantly reduced by the reduction in fresh charge losses. The pressure variation also decreased by the improved combustion process. CRANKCASE SCAVENGED two-stroke gasoline engines suffer from fresh charge losses leading to poor fuel economy and it is a reason for large increases of HC in the exhaust.
Technical Paper

Combustion Behaviors Under Accelerating Operation of an IDI Diesel Engine

1980-09-01
800966
In a four-cycle, naturally aspirated, pre-chamber diesel engine, the combustion characteristics such as the rates of fuel injection, the ignition lag, the rates of heat release, the combustion peak pressure, the maximum rates of pressure rise, and the smoke density, were investigated for over 70 consecutive cycles under acceleration, with the aid of an on-line data handling system developed for this experiment. The effects of operating conditions such as the fuel injection timing, the fuel spray angle, the wall temperature of the combustion chamber, and the coolant temperature, on the combustion characteristics were also investigated.
Technical Paper

Experimental Reduction of NOx, Smoke, and BSFC in a Diesel Engine Using Uniquely Produced Water (0 - 80%) to Fuel Emulsion

1978-02-01
780224
With the aid of static mixer and non-ionic emulsifying agent, a comparatively stable water-fuel emulsion was obtained. Engine performance in a 4 cycle direct injection engine using these fuels were studied. A large reduction of NOx concentration was obtained over the wide range of engine operation, in spite of increased ignition lag and rapid combustion. Furthermore, improvements of economy and reduction of exhaust smoke were obtained. The reduction of NOx concentration, fuel consumption and smoke were even more remarkable when compared with operating same engine with water fumigation.
Technical Paper

A Method to Improve the Solubility and Combustion Characteristics of Alcohol-Diesel Fuel Blends

1982-02-01
821113
This paper reports the results of two parallel investigations: An investigation on the solubility of alcohols in diesel fuels, and the diesel engine performance with the blended fuels. The investigation proposes an empirical formula for the solubility of alcohols in diesel fuels, as a function of temperature, water content, additive concentration and specific gravity of the diesel fuel. The engine performance when using the blended fuels was also investigated. Compared with conventional diesel fuels, the blended fuels show promise of better thermal efficiency, smoke free operation, and reduction of HC, NOx, and CO emissions.
Technical Paper

Elimination of Combustion Difficulties in a Glow Plug-Assisted Diesel Engine Operated with Pure Ethanol and Water-Ethanol Mixtures

1983-02-01
830373
Forced ignition with glow plugs has great potential for the utilization of alcohol fuels in diesel engines. However, the installation of glow plugs may cause misfiring or knocking in parts of the operating range. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a glow plug-assisted diesel engine; these factors may be classified into two categories: the factors related to the temperature history of the drop lets before contact with the glow plug, and those related to the probability of contact. By optimizing these factors, the combustion difficulties were successfully eliminated over the whole operating range, and engine performance comparable with conventional diesel operation was achieved.
Technical Paper

Achievement of Stable and Clean Combustion Over a Wide Operating Range in a Spark-Assisted IDI Diesel Engine with Neat Ethanol

1984-02-01
840517
Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.
Technical Paper

Low Carbon Flower Buildup, Low Smoke, and Efficient Diesel Operation with Vegetable Oils by Conversion to Mono-Esters and Blending with Diesel Oil or Alcohols

1984-09-01
841161
The purpose of this investigation is to evaluate the feasibility of rapeseed oil and palm oil for diesel fuel substitution in a naturally aspirated D.I. diesel engine, and also to find means to reduce the carbon deposit buildup in vegetable oil combustion. In the experiments, the engine performance, exhaust gas emissions, and carbon deposits were measured for a number of fuels: rapeseed oil, palm oil, methylester of rapeseed oil, and these fuels blended with ethanol or diesel fuel with different fuel temperatures. It was found that both of the vegetable oil fuels generated an acceptable engine performance and exhaust gas emission levels for short term operation, but they caused carbon deposit buildups and sticking of piston rings after extended operation.
Technical Paper

A Simulation of Diesel Engine Combustion Noise

1976-02-01
760552
In the present work, an attempt was made to predict engine noise from the shape of the burning rate curve. Thus, the influence of the shape of the burning rate curve on engine noise, especially on combustion noise was studied in detail and clarification of the relationship was successfully made. At first, an approximation of burning rate curve using a function was attempted. And in second, the transfer rate from cylinder pressure to combustion noise was obtained. Then, the relation between the deciding parameters of burning rate curve and noise and performance of engine were studied.
Technical Paper

Nature and Reduction of Cycle-to-Cycle Combustion Engine with Ethanol-Diesel Fuel Blends

1983-09-12
831352
Many of the promissing alternative fuels have relatively low cetane numbers, and may-result in combustion variation problems. This paper presents the chracteristics of the cycle-to-cycle combustion variations in diesel engines, and analyzes and evaluates the mechanism. Combustion variations appear in various forms, such as variations in ignition lag, indicated mean effective pressure, maximum combustion pressure, or rate of heat release. These variations are clearly correlated, and it is possible to represent the combustion variations by the standard deviation in the combustion peak pressure. The combustion variations are random (non-periodic), and are affected by ethanol amount, intake air temperature, engine speed and other various operating conditions.
X