Refine Your Search

Topic

Search Results

Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Combustion and Emission Characteristics of Multiple Stage Diesel Combustion

1998-02-23
980505
A new diesel combustion concept termed MULDIC (MUL-tiple stage DIesel Combustion), which can reduce NOx emissions at high load conditions, was studied by means of engine tests, combustion observation, and numerical simulation. In MULDIC, the first stage combustion corresponds to premixed lean combustion, and the second stage combustion corresponds to diffusion combustion under high temperature and low oxygen conditions. The engine tests showed that simultaneous reduction of NOx and smoke could be obtained with MULDIC operation, even at an excess air ratio of 1.4. Fuel consumption was higher compared to conventional operation because of premature ignition of the first stage combustion and extremely late second stage injection. However, optimization of the first stage combustion increased the degree of constant volume combustion, and hence the thermal efficiency was increased.
Technical Paper

A Study on Surrounding Air Flow Induced by Diesel Sprays

1998-02-23
980805
A study of the mixing mechanism of fuel with surrounding air is necessary in order to clarify the combustion process. In this study, the flow field near non-evaporating diesel spray as well as spray surface were observed and analyzed using a Nd-YAG laser light sheet. A single shot fuel spray was injected into a high pressure vessel and photographed under double-pulse laser illumination. The images of dispersed particles in the vessel were processed and velocity vectors were obtained by the auto-correlation method. Measured results showed temporal variation in the air movement around the spray. Just after the start of injection, air near the nozzle was pushed outward by the spray tip, after which the flow direction reversed. The air velocity ahead of spray tip was very low compared to fuel spray tip velocity. At a stable injection condition, air near the nozzle tip was pulled by the spray movement and flowed uniformly, and the spray-air boundary was smooth.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

2-D Soot Visualization in Unsteady Spray Flame by means of Laser Sheet Scattering Technique

1991-02-01
910223
The two-dimensional distribution of a soot cloud in an unsteady spray flame in a rapid compression machine(RCM) was visualized using the laser sheet scattering technique. A 40 mm x 50 mm cross section on the flame axis was illuminated by a thin laser sheet from a single pulsed Nd:YAG laser(wavelength 532 nm). Scattered light from soot particles was taken by a CCD camera via a high speed gated image intensifier. The temporal variation of the scattered light images were presented with the injection pressure as a parameter. The results showed that scattered light was intense near the periphery of the flame tip and that the scattered light becomes weaker significantly and disappears fast after the end of injection as injection pressure is increased. This technique was also applied to the visualization of the two-dimensional distribution of liquid droplets in the non-evaporating spray to correlate it with the soot concentration distribution.
Technical Paper

“Catalytic Engine” NOx Reduction of Diesel Engines with New Concept Onboard Ammonia Synthesis System

1992-02-01
920469
Ammonia is one of the most useful compounds that react with NOx selectively on a catalyst, such as V2O5-TiO2, under oxygen containing exhaust gas. However ammonia cannot be stored because of its toxicity for the small power generator in populated areas or for the diesel vehicles. A new concept for NOx reduction in diesel engine using ammonia is introduced. This system is constructed from the hydrogen generator by fuel reformer, the ammonia synthesizer, SCR catalyst for NOx reduction and the gas injection system of reformed gas into the cylinder. Experimental results show that, the SCR catalyst provides a very high rate of NOx reduction, reformed gas injection into cylinder is very effective for particulate reduction. WHEN CONSIDERING INTERNAL COMBUSTION ENGINES of the 1990's the question of how to harmonize the engine with the natural environments is one of the greatest problems. The internal combustion engine changes a substance into energy via its explosive combustion.
Technical Paper

NOx Reduction from Diesel Combustion Using Pilot Injection with High Pressure Fuel Injection

1992-02-01
920461
Several methods to reduce ignition delay period were tested in combination with a high pressure injection and effects on combustion improvement were examined. It was found that the reduction of ignition delay does not give so much improvement at the usual injection timing before TDC, but when the injection timing is considerably retarded or when the original ignition delay is relatively long, shortening of the ignition delay is effective to reduce pre-mixed combustion and NOx emission. Further, assuming the combustion system which conforms to the 1983 Japanese regulation as the reference system, it was found that the combination of pilot injection and high injection pressure, simultaneously reduces NOx by approximately 35% and smoke by 60-80% without worsening the fuel economy.
Technical Paper

Stochastic Model for Diesel Combustion Considering Some Turbulent Mixing Zones

1992-02-01
920693
A new model to describe diesel combustion process has been developed. In this model diesel combustion field is divided into two zones, premixing and combustion. Turbulent mixing process is described by the stochastic approach in each zone separately. Comparison of calculations with experimental results showed that this model can predict the entire course of heat release and nitrogen-oxide formation precisely, under wide-spread conditions. Two-dimensional flame temperature distributions in the combustion field by the two color method were compared with simulation results. Both the measured and the calculated flame temperature distributions showed good agreements with each other. In the diesel combustion process, the injected fuel mixes with air entrained inside the spray. The mixture is thus formed, and ignites at several points. Random expansion of flamelets accelerates both mixing and combustion. Following this, fairly moderate diffusion combustion proceeds.
Technical Paper

Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection

1992-02-01
920692
Two dimensional flame temperature distributions in D.I. diesel engine with high pressure fuel injection were measured by the image analysis of high speed photographs based on two color method. Effects of injection pressure and nozzle hole diameter on flame temperature distribution were examined. The flame temperature in the case of high pressure injection is higher than that in low injection pressure. The higher flame temperature in high pressure injection results from the rapid compression of burned gases. The KL value which is an index of soot density in the combustion chamber decreases as injection pressure increases. The higher oxidation rate of soot at the later period of combustion may contribute to a soot reduction in the case of high pressure injection.
Technical Paper

A Study of the Structure of Diesel Sprays Using 2-D Imaging Techniques

1992-02-01
920107
The structure of dense sprays was investigated using 2-D imaging techniques. To investigate the mechanism of atomization, the liquid phase in a non-evaporating spray was visualized by a thin laser sheet formed by a single pulse from a Nd:YAG laser at the distance from 4 to 19 mm from the nozzle orifice with the injection pressure and the surrounding gas density as parameters. A new technique for the visualization of vapor phase in an evaporating spray, the SSI (Silicone particle Scattering Imaging) method, was proposed to investigate the structure of the vapor phase regions of the spray.
Technical Paper

A Study on Soot Formation in Unsteady Spray Flames via 2-D Soot Imaging

1992-02-01
920114
The formation and oxidation processes of soot particles in unsteady spray flames were investigated in a quiescent atmosphere using 2-D laser sheet visualization. The mid-plane of a flame was illuminated twice during a short time-interval by a laser sheet from a double-pulsed YAG laser. An image pair of the scattered light from soot particles was taken by two intensified gated cameras in succession. The velocity vectors of soot clouds at various location in the sooting region were estimated using the spatial correlation between the image pair. The results of temporal and spatial variation of velocity and scattering intensity in the evolving soot clusters made it clear that soot is mainly formed in the periphery of the flame tip where the air entrainment is less and flame temperature favors soot formation.
Technical Paper

Observation of High Pressure Fuel Spray with Laser Light Sheet Method

1992-02-01
920459
To clarify the detailed structure of high pressure fuel spray, 2-D sectional images of non-evaporating fuel sprays in a high pressure vessel were observed by using the laser light sheet of a copper vapor laser. By this system, many sectional and continuous photographs of the same spray were obtained, and were very effective for the detailed observation of the spray inner structure and its developing process. The spray inner structure was very complicated, and its fuel density distribution was very heterogeneous. And for its developing process, the spray advances straight immediately after injected, then meanders, and deforms into a branch-like structure. Advancing downstream, these branches distribute complicatedly and heterogeneously with low density droplets. The heterogeneity is owing to these branches. And, the developing process is divided into four regions. Further, the effects of some parameters on this process were investigated.
Technical Paper

A Two-Zone Model Analysis of Heat Release Rate in Diesel Engines

1997-10-01
972959
A thermodynamic two-zone model which assumes a stoichiornetric burned gas region and unburned air region is presented in an attempt to calculate more precise rate of heat release of diesel combustion. A comparison is made of the rate of heat release obtained by the two-zone model with that obtained by the conventional single-zone model. It shows around 10 % increase in the rate of heat release with the two-zone model. The effect of state equation of gas is also examined with the single-zone model and the use of a real gas law in stead of the perfect gas law is found to yield minor difference in the rate of heat release at a high boost operating condition.
Technical Paper

The Effects of Mixture Formation on Premixed Lean Diesel Combustion Engine

1998-02-23
980533
Previous research in our laboratory has shown that NOx emissions can be sharply reduced by PREDIC (PRE-mixed lean DIesel Combustion), in which fuel is injected very early in the compression process. However some problems still remain, such as higher fuel consumption, a lack of ignition timing control, and a large increase in THC and CO, compared to conventional diesel combustion. Appropriate mixture formation is necessary to solve these problems. In this paper, the influence of mixture formation on PREDIC was investigated. It was found that the pintle type injection nozzle was shown to be suitable for PREDIC, because it produced a comparatively uniform mixture in the combustion chamber and avoided collision of the fuel spray with the cylinder liner. Modeling by the KIVA-II software package was carried out to improve our understanding of the mixture formation process.
Technical Paper

Quantitative Measurement of Fuel Vapor Concentration in an Unsteady Evaporating Spray via a 2-D Mie-Scattering Imaging Technique

1993-10-01
932653
The cross-sectional distribution of fuel vapor concentration in an evaporating spray was measured quantitatively by a new scattering imaging technique, silicone particle scattering imaging method, which was proposed in a previous paper[1]. When fuel containing silicone oil injected into a nitrogen environment at high temperature, the volatile base fuel in the droplets vaporized rapidly, leaving behind small droplets of silicone oil suspended in the vapor-gas mixture. The silicone oil droplets were illuminated by a thin laser sheet, and the scattered light was imaged by a CCD camera. The cross-sectional distribution of vapor concentration was estimated from the scattering image of the silicone oil droplets by Mie scattering theory. The results demonstrated clearly the inhomogeneity of the fuel vapor concentration. The distribution of vapor concentration was discontinuous, and islands of rich mixture with a scale of several millimeters existed in the center region of the spray.
Technical Paper

Mixing Enhancement in Diesel-Like Flames via Flame Impingement on Turbulence-Generating Plates

1992-10-01
922210
Soot concentration is very high in the periphery near the head of an unsteady spray flame which is achieved in a quiescent atmosphere in a rapid compression machine. To reduce soot concentration in this region, it was intended to improve fuel-air mixing by letting the flame impinge on a turbulence-generating plate. Two types of turbulence-generating plates, one donut-type, the other cross-type, were tested. Soot concentration in the flame was imaged using the laser shadow technique. The effect of injection pressure on soot reduction by the flame impingement was also investigated. The overall soot concentration is reduced significantly in the case when the flame impinges on the cross-type turbulence-generating plate at 50 mm (333 nozzle diameters) from the nozzle exit. The flame impingement on the cross-type turbulence-generating plate at 333 nozzle diameters makes soot reduction little dependent on injection pressures.
Technical Paper

Diesel Combustion Improvement and Emissions Reduction Using VCO Nozzles with High Pressure Fuel Injection

1994-03-01
940899
This paper presents the results of engine experiments and spray observations on a VCO nozzle. Two types of VCO nozzles having different hole shapes were investigated. One had a straight step hole (the VCO-S) and the other had a tapered step hole (the VCO-T). Both VCO nozzles could greatly reduce HC emissions in comparison to a standard nozzle. The VCO-S nozzle could reduce NOx emissions more than the VCO-T nozzle, and its spray penetration was shorter than that of the VCO-T.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
X