Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Modeling of Spot Weld under Impact Loading and Its Effect on Crash Simulation

Spot weld is the primary joining method to assemble the automotive body structure. In any crash events some separation of spot-welds can be expected. However, if this happens in critical areas of the vehicle it can potentially affect the integrity of the structure. It will be beneficial to identify such issues through CAE simulation before prototypes are built and tested. This paper reports a spot weld modeling methodology to characterize spot weld separation and its application in full vehicle crash simulation. A generalized two-node spring element with 6 DOF at each node is used to model the spot weld. Separation of spot welds is modeled using three alternative rupture criteria defined in terms of peak force, displacement and energy. Component level crash tests are conducted using VIA sled at various impact speeds to determine mean crush load and identify possible separation of welds.
Technical Paper

Testing and Finite Element Modeling of Hydroform Frames in Crash Applications

Hydroformed components are replacing stamped parts in automotive frames and front end and roof structures to improve the crash performance of vehicles. Due to the increasing application of hydroformed components, a better understanding of the crash behavior of these parts is necessary to improve the correlation between full-vehicle crash tests and FEM analysis. Accurately predicting the performance of hydroformed components will reduce the amount of physical crash testing necessary to develop the new components and new vehicles as well as reduce cycle time. Virgin material properties are commonly used in FEM analysis of hydroformed components, which leads to erroneous prediction of the full-vehicle crash response. Changes in gauge and material properties during the hydroforming process are intuitive and can be reasonably predicted by using forming simulations. The effects of the forming process have been investigated in the FEA models that are created for crash analyses.
Technical Paper

Finite Element Modeling of the Frame for Body on Frame Vehicles, Part 1 - Subsystem Investigation

For a body-on-frame (BOF) vehicle, the frame is the major structural subsystem to absorb the impact energy in a frontal vehicle impact. It is also a major contributor to energy absorption in rear impact events as well. Thus, the accuracy of the finite element frame model has significant influence on the quality of the BOF vehicle impact predictability. This study presents the latest development of the frame modeling methodology on the simulation of BOF vehicle impact performance. The development is divided into subsystem (frame sled test) and full system (full vehicle test). This paper presents the first phase, subsystem testing and modeling, of the frame modeling development. Based on the major deformation modes in frontal impact, the frame is cut into several sections and put on the sled to conduct various tests. The success of the sled test highly depends on whether the sled results can replicate the deformation modes in the full vehicle.
Technical Paper

Development of a Target Vehicle Model for Vehicle-to-Vehicle Frontal Compatibility Applications

An accurate and robust target vehicle model was developed for vehicle compatibility applications. Although vehicle compatibility simulation involves a bullet vehicle hitting a target vehicle, the focus of this paper is to develop a target vehicle model. To ensure the robustness, the target vehicle model needs to provide reasonable responses under different impact conditions. This can be achieved by calibrating the model against different physical tests. Significant effort was taken to improve the accuracy of the target vehicle model. In the calibration process, some components were found to have significant effects on the global responses. These components play different roles in different crash modes. To improve the overall correlation with test, different component tests were also designed and conducted to understand the characteristics and improve the modeling of these critical components.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Technical Paper

A Practical Approach to Consider Forming Effects for Full Vehicle Crash Application

The forming effects along with strain rate, actual material properties and weld effects have been found to be very critical for accurate prediction of crash responses especially the prediction of local deformation. As a result, crash safety engineers started to consider these factors in crash models to improve the accuracy of CAE prediction and reduce prototype testing. The techniques needed to incorporate forming simulation results, including thickness change, residual stresses and strains, in crash models have been studied extensively and are well known in automotive CAE community. However, a challenge constantly faced by crash safety engineers is the availability of forming simulation results, which are usually supplied by groups conducting forming simulations. The forming simulation results can be obtained by either using incremental codes with actual stamping processes or one-step codes with final product information as a simplified approach.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.