Refine Your Search

Search Results

Technical Paper

Combustion and Emissions Characteristics of Minimally Processed Methanol in a Diesel Engine Without Ignition Assist

1994-03-01
940326
Mixtures of methanol, water and heavier alcohols, simulating “raw’ methanol at various levels of processing, were tested in a constant volume combustion apparatus (CVCA) and in a single-cylinder, direct-injection diesel engine. The ignition characteristics determined in the CVCA indicated that the heavier alcohols have beneficial effects on the auto-ignition quality of the fuels, as compared to pure methanol. Water, at up up to 10 percent by volume, has little effect on the ignition quality. In all cases, however, the cetane numbers of the alcohol mixtures were very low. The same fuels were tested in a single cylinder engine, set-up in a configuration similar to current two-valve DI engines, except that the compression ratio was increased to 19:1. Pure methanol and five different blends of alcohols and water were tested in the engine at five different speed-load conditions.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Steady-State and Transient Engine Tests with a Five Percent Water-in-Fuel Microemulsion

1983-02-01
830555
This paper is the fourth in a series describing work sponsored by the Bureau of Mines to reduce diesel particulate and gaseous emissions through fuel modification. A stabilized water microemulsion fuel developed in previous work was tested in a Caterpillar 3304 NA four-cylinder engine with compression ratio and injection timing and rate optimized for this fuel to demonstrate the emissions reductions achieved. It was tested in both standard and optimum configurations with both baseline DF-2 and optimized microemulsion fuels. Gaseous and particulate data are presented from steady-state tests using a computer-operated mini-dilution tunnel and from transient tests using a total exhaust dilution tunnel. The optimized engine-fuel combination was effective in reducing particulates and oxides of nitrogen in steady-state tests. However, the standard engine-fuel combination provided the lowest particulate and NOx emissions in transient tests.
Technical Paper

Control of Diesel Exhaust Emissions in Underground Coal Mines - Single-Cylinder Engine Optimization for Water-in-Fuel Miscroemulsions

1983-02-01
830553
The increased use of diesel-powered equipment in underground mines has prompted interest in reducing their exhaust pollutants. Control of particulate emissions without substantial penalties in other emissions or fuel consumption is necessary. This paper describes test results on a prechaaber, naturally-aspirated, four-cycle diesel engine in which two different concentrations of water-in-fuel emulsions were run. The independent variables comprising the test matrix were fuel, speed, load, injection timing, injection rate, and compression ratio. The dependent variables of the experiment included particulate and gaseous emissions and engine thermal efficiency. Regression analysis was performed on the data to determine how particulate emissions were affected by fuel and engine parameters. Results of this analysis indicated that substantial reductions in particulate emissions could be obtained by utilizing water-in-fuel emulsions.
Technical Paper

The Effects of Engine and Fuel Parameters on Diesel Exhaust Emissions during Discrete Transients in Speed and Load

1985-02-01
850110
Diesel exhaust emission levels have been measured during discrete transients in speed and load, and with changes made to the engine and fuel. Particulate, oxides of nitrogen, unburned hydrocarbon, and carbon monoxide measurements were made for two fuels, DF2 and 5 percent water-in-fuel microemulsion, for both a standard Caterpillar 3304 and a modified 3304 engine. Engine modifications included increasing compression ratio and retarding injection timing. This paper examines the effects of the water addition and engine modification on the steady-state and transient emission levels. In general, the addition of water decreased the particulate and oxides of nitrogen emission levels for the standard engine, but increased the levels of hydrocarbons and carbon monoxide. For the modified engine, the water addition resulted in a slight decrease in oxides of nitrogen and particulate matter at high speed and load conditions.
Technical Paper

The Effects of Discrete Transients in Speed and Load on Diesel Engine Exhaust Emissions

1985-02-01
850109
The responses of diesel engine exhaust emissions to transients in speed and torque are examined. Particulate matter, hydrocarbons, carbon monoxide, and oxides of nitrogen were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments, two of which were steady state, in general, each segment was defined by choosing the beginning and ending values for speed and torque, and the segment length. Using regression techniques, prediction equations were obtained for each emission. The equations relate the emission levels to engine parameters, which describe each segment. Speed and torque were found to be important variables as were the rates at which speed and torque changed. Transients in torque were found to increase particulate and carbon monoxide emissions.
Technical Paper

Understanding the mechanism of Cylinder Bore and Ring Wear in Methanol Fueled SI Engines

1986-10-01
861591
One of the major problems created by the use of methanol fuels in SI engines is the high cylinder bore and ring wear rates observed during operation at low engine temperatures. The objective of the work reported in this paper was to identify the processes controlling the corrosion/wear mechanism in methanol-fueled, spark-ignition engines. Basically, three different types of experiments were performed during this project. The experiments consisted of: 1. Combustion experiments designed to identify the combustion products of methanol at various locations within a confined methanol flame; 2. Exposure studies designed to define the specific role of each of the combustion products on the corrosion mechanism; 3. Lubricant screening experiments designed to identify the mode of penetration of the oil film, and the location, in the microscale, of the surface attack. Performic acid was identified as the corrosive agent.
Technical Paper

Comparison of Predicted and Measured Diesel Exhaust Emission Levels During Transient Operation

1987-11-01
872140
A technique is verified for mapping the exhaust emission levels of a diesel engine during transient operation. Particulate matter, oxides of nitrogen, hydrocarbons, and carbon monoxide emissions were sampled for discrete segments of various transient cycles. Each cycle consisted of four distinct segments. The discrete segments are described by average engine conditions, rate of change variables, and segment length. Regression analysis was used to develop equations relating the emission levels during each segment to the engine parameters. The regression equations were then used to obtain estimates of composite emission levels of several complex transient cycles that were subsequently tested. These cycles included the EPA heavy-duty transient cycle and two simulated heavy-duty cycles developed for underground mine vehicles. Comparison of the predicted and measured cycle emissions are made for the EPA heavy duty cycle and the simulated mine cycles.
Technical Paper

Engine and Constant Volume Bomb Studies of Diesel ignition and Combustion

1988-10-01
881626
Changing fuel quality, increasingly stringent exhaust emission standards, demands for higher efficiency, and the trend towards higher specific output, all contribute to the need for a better understanding of the ignition process in diesel engines. In addition to the impact on the combustion process and the resulting performance and emissions, the ignition process controls the startability of the engine, which, in turn, governs the required compressions ratio and several of the other engine design parameters. The importance of the ignition process is reflected in the fact that the only combustion property that is specified for diesel fuel is the ignition delay time as indicated by the cetane number. The objective of the work described in this paper was to determine the relationship between the ignition process as it occurs in an actual engine, to ignition in a constant volume combustion bomb.
Technical Paper

Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber

1992-02-01
920185
In-cylinder control of particulate emissions in a diesel engine depends on careful control and understanding of the fuel injection and air/fuel mixing process. It is extremely difficult to measure physical parameters of the injection and mixing process in an operating engine, but it is possible to simulate some diesel combustion chamber conditions in a steady flow configuration whose characteristics can be more easily probed. This program created a steady flow environment in which air-flow and injection sprays were characterized under non-combusting conditions, and emissions measurements were made under combusting conditions. A limited test matrix was completed in which the following observations were made. Grid-generated air turbulence decreased particulates, CO, and unburned hydrocarbons, while CO2 and NOx levels were increased. The turbulence accelerated combustion, resulting in more complete combustion and higher temperatures at the measurement location.
Technical Paper

Diesel Fuel Composition Effects on Ignition and Emissions

1993-10-01
932735
Four broad boiling range materials, representative of current and future feedstocks for diesel fuel, were processed to two levels of sulfur and aromatic content. These materials were then distilled into six to eight fractions each. The resulting 63 fuels were then characterized physically and chemically, and tested in both a constant volume combustion apparatus and a single cylinder diesel engine. The data obtained from these analyses and tests have been analyzed graphically and statistically. The results of the initial statistical analysis, reported here, indicate that the ignition quality of a fuel is dependent not only on the overall aromatic content, but also on the composition of the material formed during hydroprocessing of the aromatics. The NOx emissions, however, are related mainly to the aromatic content of the fuel, and the structure of the aromatic material.
Technical Paper

HCCI Operation of a Dual-Fuel Natural Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low to Moderate Engine Loads

2001-05-07
2001-01-1897
A new combustion concept has been developed and tested for improving the low to moderate load efficiency and NOx emissions of natural gas engines. This concept involves operation of a dual-fuel natural gas engine on Homogeneous Charge Compression Ignition (HCCI) in the load regime of idle up to 35 % of the peak torque. A dual-fuel approach is used to control the combustion phasing of the engine during HCCI operation, and conventional spark-ignited natural gas combustion is used for the high-load regime. This concept has resulted in an engine with power output and high-load fuel efficiency that are unchanged from the base engine, but with a 10 - 15 % improvement to the low to moderate load fuel efficiency. In addition, the engine-out NOx emissions during HCCI operation are over 90% lower than on spark-ignited natural gas operation over the equivalent load range.
Technical Paper

The Use of Hybrid Fuel in a Single-Cylinder Diesel Engine

1980-10-01
801380
Hybrids are fuels derived from combinations of different energy sources and which are generally formulated as solutions, emulsions, or slurries. The underlying objective of this program is to reduce the use of petroleum-derived fuels and/or to minimize the processing requirements of the finished hybrid fuels. Several hybrid fuel formulations have been developed and tested in a direct injection single-cylinder diesel engine. The formulations included solutions of ethanol and vegetable oils in diesel fuel, emulsions of methanol and of ethanol in diesel fuel; and slurries of starch, cellulose, and “carbon” in diesel fuel. Based on the progress to date, the solutions and emulsions appear to be viable diesel engine fuels if the economic factors are favorable and the storage and handling problems are not too severe. The slurries, on the other hand, are not to the same point of development as the solutions and emulsions.
Technical Paper

The Effects of Fuel Properties and Composition on Diesel Engine Exhaust Emissions - A Review

1981-09-01
810953
Due to the cost and mobility advantages of diesel-powered mine vehicles over electric vehicles, it is anticipated that the diesel engine will become more widely used in underground mines in this country. Concern has arisen, however, over the impact of diesel exhaust emissions on the air quality in the underground mine environment. A literature search has been conducted to identify known effects of fuel properties on the reduction of diesel exhaust emissions. Reductions can be obtained by optimizing fuel properties and by considering alternative fuels to standard diesel fuel. However, the data base is relatively small and the results highly dependent on engine type and operating conditions. Engine studies on a typical mine diesel are necessary to draw quantitative conclusions regarding the reduction of emissions, especially particulates and NO2 which have not been generally addressed in previous studies.
Technical Paper

Nox Control in Heavy-Duty Diesel Engines - What is the Limit?

1998-02-23
980174
Methods to reduce direct injected diesel engine emissions in the combustion chamber will be discussed in this paper. The following NOx emission reduction technologies will be reviewed: charge air chilling, water injection, and exhaust gas recirculation (EGR). Emphasis will be placed on the development of an EGR system and the effect of EGR on NOx and particulates. The lower limit of NOx that can be obtained using conventional diesel engine combustion will be discussed. Further reductions in NOx may require changing the combustion process from a diffusion flame to a homogeneous charge combustion system.
Technical Paper

Effects of Water-Fuel Emulsions on Spray and Combustion Processes in a Heavy-Duty DI Diesel Engine

2002-10-21
2002-01-2892
Significant reductions of particulate matter (PM) and nitrogen oxides (NOx) emissions from diesel engines have been realized through fueling with water-fuel emulsions. However, the physical and chemical in-cylinder mechanisms that affect these pollutant reductions are not well understood. To address this issue, laser-based and chemiluminescence imaging experiments were performed in an optically-accessible, heavy-duty diesel engine using both a standard diesel fuel (D2) and an emulsion of 20% water, by mass (W20). A laser-based Mie-scatter diagnostic was used to measure the liquid-phase fuel penetration and showed 40-70% greater maximum liquid lengths with W20 at the operating conditions tested. At some conditions with low charge temperature or density, the liquid phase fuel may impinge directly on in-cylinder surfaces, leading to increased PM, HC, and CO emissions because of poor mixing.
Technical Paper

EPA HDEWG Program - Test Fuel Development

2000-06-19
2000-01-1857
In 1995, US Environmental Protection Agency (EPA) formed the Heavy-Duty Engine Working Group (HDEWG). The objective of the group was to assess the role diesel fuel could play in meeting exhaust emission standards proposed for model year 2004+ heavy-duty diesel engines. The group developed a three-phase program to achieve this objective. This paper describes the development of test fuels used in Phase 2 of the EPA HDEWG Program to investigate the effect of fuel properties on heavy-duty diesel engine emissions. It discusses the design of the fuel matrix, reviews the process of test fuel preparation and presents the results of a multi-laboratory fuel analysis program. Fuel properties selected for investigation included density, cetane number, mono- and polyaromatic hydrocarbon content.
Technical Paper

EPA HDEWG Program-Engine Tests Results

2000-06-19
2000-01-1858
In 1997 the US EPA formed a Heavy-Duty Engine Working Group (HDEWG) in the Mobile Sources Technical Advisory Subcommittee to address the questions related to fuel property effects on heavy-duty diesel engine emissions. The Working Group consisted of members from EPA and the oil refining and engine manufacturing industries. The goal of the Working Group was to help define the role of the fuel in meeting the future emissions standards in advanced technology engines (beyond 2004 regulated emissions levels). To meet this objective a three-phase program was developed. Phase I was designed to demonstrate that a prototype engine, located at Southwest Research Institute, represented similar emissions characteristics to that of certain manufacturers prototype engines. Phase II was designed to document the effects of selected fuel properties using a statistically designed fuel matrix in which cetane number, density, and aromatic content and type were the independent variables.
Technical Paper

Relationships Between Fuel Properties and Composition and Diesel Engine Combustion Performance and Emissions

1994-03-01
941018
Five different diesel fuel feedstocks were processed to two levels of aromatic (0.05 sulfur, and then 10 percent) content. These materials were distilled into 6 to 8 narrow boiling range fractions that were each characterized in terms of the properties and composition. The fractions were also tested at five different speed load conditions in a single cylinder engine where high speed combustion data and emissions measurements were obtained. Linear regression analysis was used to develop relationships between the properties and composition, and the combustion and emissions characteristics as determined in the engine. The results are presented in the form of the regression equations and discussed in terms of the relative importance of the various properties in controlling the combustion and emissions characteristics. The results of these analysis confirm the importance of aromatic content on the cetane number, the smoke and the NOx emissions.
Technical Paper

Dual Fuel Injection Nozzle for Methanol Fueled Compression Ignition Engine Operation

1991-10-01
912357
The objective of the work reported in this paper was to develop and demonstrate an injection nozzle which can be used to inject both diesel fuel and methanol in to a direct injection diesel engine. The constraints on the nozzle were that it must provide acceptable fuel metering and atomization for the diesel fuel so that the engine can be operated at rated load on diesel fuel alone, or operate at full load with the diesel fuel as a pilot for the methanol. An additional constraint was that the nozzle design was to be easily adaptable to the existing injection nozzle so that engine head modifications are not required. The initial design was evaluated in a constant volume test chamber in which the pressure was varied from atmospheric to engine compression pressures.
Technical Paper

Cetane Numbers of Fatty Compounds:Influence of Compound Structure and of Various Potential Cetane Improvers

1997-05-01
971681
Biodiesel is a mixture of esters (usually methyl esters) of fatty acids found in the triglycerides of vegetable oils. The different fatty compounds comprising biodiesel possess different ignition properties. To investigate and potentially improve these properties, the cetane numbers of various fatty acids and esters were determined in a Constant Volume Combustion Apparatus. The cetane numbers range from 20.4 for linolenic acid to 80.1 for butyl stearate. The cetane numbers depend on the number of CH2 groups as well as the number of double bonds and other factors. Various oxygenated compounds were studied for their potential of improving the cetane numbers of fatty compounds. Several potential cetane improvers with ignition delay properties giving calculated cetane numbers over 100 were identified. The effect of these cetane improvers depended on their concentration and also on the fatty material investigated.
X