Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Optimization of Manufacturing Process of Glass Fibers/Phenol Composites. Effects of Solidification Conditions, Fiber Length and Additional Materials on their Mechanical Properties

2003-03-03
2003-01-1128
The aim of these experiments is to determine the best way to obtain high mechanical properties for phenol resin and glass fibers based composites. Various ways of fabricating the material were studied, as well as its best composition. The conditions of drying, molding processes were optimized. From the most conventional method, using ethanol as a solvent to newer ones, including continuous ways of processing and the use of water instead of ethanol, a lot of possibilities exist to produce such a material. This paper explains the advantages and drawbacks of a whole range of manufacturing processes.
Technical Paper

Effects of CNBR Modification on Mode I Fracture of Epoxy Adhesives for Automotive Application

1995-02-01
950130
The effects of CNBR (cross-linked acrylonitrile butadiene rubber) modification on the fracture characteristics of epoxy adhesives were investigated under Mode I static loading. Fracture tests were conducted by using DCB (double cantilever beam) specimens. Rubber content, adhesive thickness and loading rate were changed. The crack extension resistance (given by energy release rate) of the epoxy adhesives was much improved by CNBR modification. For the rubber modified epoxy adhesives, the crack extension resistance becomes high with an increase in adhesive thickness as well as loading rate. The reason why the CNBR modification improves the crack extension resistance was explained based on the surface observation and fractal dimension of the fractured surface.
Technical Paper

Fatigue Fracture Characteristics of Toughened Epoxy Adhesive Under Mode I Loading - Effects of Glass Beads and CNBR Rubber Modification

1996-02-01
960576
The effects of inclusion of glass beads and rubber modification on the fatigue fracture characteristics of an epoxy adhesive were investigated. Hybrid effects were also investigated when not only the epoxy adhesive was rubber modified but also when glass beads were mixed simultaneously. Fatigue crack growth resistance was greatly increased due to glass beads, CTBN and CNBR modifications at the second stage of crack growth (da/dN=10-4-10-3 mm/cycle). However, the energy release rate at threshold for both CNBR and CTBN modified adhesives were lower than that for the unmodified adhesive. No significant hybrid effects were distinguishable.
Technical Paper

Effects of Temperature and Crack Tip Opening Rate on Fracture Behavior of CNBR Modified Epoxy Adhesives Under Mode I Loading

1997-02-24
970661
The effects of temperature, crack tip opening rate and rubber content on static fracture characteristics of CNBR (Cross-linked acryloNitrile Butadiene Rubber) modified epoxy adhesives were investigated under mode I loading. Loading-unloading tests were statically performed by using DCB (Double Cantilever Beam) specimens. The fracture toughness increased with increasing the rubber content. The fracture toughness of CNBR modified and unmodified epoxy adhesives was much influenced by temperature and crack tip opening rate. The surface topology of fractured surface was changed by temperature and type of adhesive.
Technical Paper

Thermal Deformation of Pressure Plates for Manual Clutches

2005-04-11
2005-01-1784
The mechanism of permanent deformation of pressure plates has been investigated under very severe conditions, which are used for automobile clutches. Sliding tests were performed, where an extreme overload was applied to the pressure plate. It is found from the test results that the residual stress in the circumferential direction varied from compression to tension after the sliding test near the sliding surface of the plate. FE (Finite element) calculations were also conducted taking both plastic deformation of the plate due to thermal expansion and geometrical non-linearity into account. The FE calculations agreed well with the experimental results. The permanent deformation mechanism for pressure plates was summarized as follows. Compressive yielding of the plate occurs at the heating stage near the sliding surface. The residual stress in tension appears in the sliding surface when the plate becomes cool, and it deflects the plate like a bowl.
X