Refine Your Search

Search Results

Journal Article

Elastic-Plastic Indentation and Flat Plate Rolling under Plane Strain Conditions

2011-04-12
2011-01-0035
In this paper, residual stresses due to single indentation and rolling on a finite plate at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the roller is modeled as rigid and has frictionless contact with the finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. For indentation and rolling at high rolling loads with extensive plastic deformation, the computational results show that the contact pressure distributions are quite different and they are also significantly different from the elastic Hertzian pressure distribution. The computational results for the rolling case show a significantly higher longitudinal compressive residual stress and a lower out-of-plane compressive residual stress along the contact surface when compared to those for the single indentation case.
Journal Article

Analytical Stress Intensity Factor Solutions for Spot Welds Joining Sheets of Different Materials and Thicknesses

2010-04-12
2010-01-0962
In this paper, analytical stress intensity factor solutions for spot welds with ideal geometry in lap-shear specimens of different materials and thicknesses are presented as functions of the applied load, the elastic material property parameters, and the geometric parameters of the weld and specimen. The analytical stress intensity factor solutions are selectively validated by the results of a three-dimensional finite element analysis for a dissimilar spot weld with ideal geometry in a lap-shear specimen. Finally, selected stress intensity factor solutions at the critical locations of spot welds in lap-shear specimens of dissimilar magnesium, aluminum and steel sheets with equal and different thicknesses are presented in the normalized forms as functions of the ratio of the specimen width to weld diameter.
Journal Article

Fatigue Behavior of Dissimilar 5754/7075 and 7075/5754 Spot Friction Welds in Lap-Shear Specimens

2010-04-12
2010-01-0961
Fatigue behavior of spot friction welds or friction stir spot welds in lap-shear specimens of dissimilar aluminum 5754-O and 7075-T6 sheets is investigated based on experimental observations and two fatigue life estimation models. Optical micrographs of the 5754/7075 and 7075/5754 welds after failure under cyclic loading conditions are examined to understand the failure mechanisms of the welds. The micrographs show that the 5754/7075 welds mainly fail from the kinked fatigue crack through the lower sheet thickness. Also, the micrographs show that the 7075/5754 welds mainly fail from the kinked fatigue crack through the lower sheet thickness and from the fracture surface through the upper sheet thickness.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Aluminum and Copper Sheets

2014-04-01
2014-01-1986
Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets are investigated. Quasi-static tests and fatigue tests of laser-welded lap-shear specimens under different load ranges with the load ratio of 0.1 were conducted. Optical micrographs of the welds after the tests were examined to understand the failure modes of the specimens. For the specimens tested under quasi-static loading conditions, the micrograph indicates that the specimen failed through the fusion zone of the aluminum sheet. For the specimens tested under cyclic loading conditions, two types of failure modes were observed under different load ranges. One failure mode has a kinked crack initiating from the interfacial surface between the aluminum and copper sheets and growing into the aluminum fusion zone at an angle close to 90°.
Journal Article

Modeling of Failure Modes of Gas Metal Arc Welds in Notched Lap-Shear Specimens of HSLA Steel

2014-04-01
2014-01-0784
The failure modes of gas metal arc welds in notched lap-shear specimens of high strength low alloy (HSLA) steel are investigated. Notched lap-shear specimens of gas metal arc welds were first made. Quasi-static test results of the notched lap-shear specimens showed two failure locations for the welds. The specimens cut from coupons with shorter weld lengths failed near the weld root whereas the specimens cut from coupons with longer weld lengths failed near the weld toe. Micro-hardness tests were conducted in order to provide an assessment of the mechanical properties of the base metal, the heat affected zone, and the weld metal. In order to understand the failure modes of these welds, finite element models were developed with the geometric characteristics of the weld metals and heat affected zones designed to match those of the micrographs of the cross sections for the long and short welds.
Journal Article

Fatigue Behavior of Stainless Steel Sheet Specimens at Extremely High Temperatures

2014-04-01
2014-01-0975
Active regeneration systems for cleaning diesel exhaust can operate at extremely high temperatures up to 1000°C. The extremely high temperatures create a unique challenge for the design of regeneration structural components near their melting temperatures. In this paper, the preparation of the sheet specimens and the test set-up based on induction heating for sheet specimens are first presented. Tensile test data at room temperature, 500, 700, 900 and 1100°C are then presented. The yield strength and tensile strength were observed to decrease with decreasing strain rate in tests conducted at 900 and 1100°C but no strain rate dependence was observed in the elastic properties for tests conducted below 900°C. The stress-life relations for under cyclic loading at 700 and 1100°C with and without hold time are then investigated. The fatigue test data show that the hold time at the maximum stress strongly affects the stress-life relation at high temperatures.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Journal Article

Stress Intensity Factor Solutions for Gas Metal Arc Welds in Lap-Shear Specimens

2015-04-14
2015-01-0708
In this paper, mode I and mode II stress intensity factor solutions for gas metal arc welds in single lap-shear specimens are investigated by the analytical stress intensity factor solutions and by finite element analyses. Finite element analyses were carried out in order to obtain the computational stress intensity factor solutions for both realistic and idealized weld geometries. The computational results indicate that the stress intensity factor solutions for the realistic welds are lower than the analytical solutions for the idealized weld geometry. The computational results can be used for the estimation of fatigue lives in a fatigue crack growth model under mixed mode loading conditions for gas metal arc welds.
Journal Article

Failure Mode and Fatigue Behavior of Dissimilar Laser Welds in Lap-Shear Specimens of Low Carbon Steel and HSLA Steel Sheets

2015-04-14
2015-01-0706
In this paper, failure modes of dissimilar laser welds in lap-shear specimens of low carbon steel and high strength low alloy (HSLA) steel sheets are investigated based on experimental observations. Micro-hardness tests across the weld zones of dissimilar laser welds were conducted. The hardness values of the fusion zones and heat affected zones are significantly higher than those of the base metals. The fatigue lives and the corresponding failure modes of laser welds as functions of the load ranges are then examined. Optical micrographs of the laser welds before and after failure under quasi-static and cyclic loading conditions are then examined. The failure modes and fatigue behaviors of the laser welds under different loading conditions are different. Under quasi-static loading conditions, a necking failure occurred in the upper low carbon steel sheet far away from the laser weld.
Journal Article

Stress Intensity Factor Solutions for Dissimilar Welds in Lap-Shear Specimens of Steel, Magnesium, Aluminum and Copper Sheets

2015-04-14
2015-01-1754
In this paper, the analytical stress intensity factor and J integral solutions for welds in lap-shear specimens of two dissimilar sheets based on the beam bending theory are first reviewed. The solutions are then presented in the normalized forms. Next, two-dimensional finite element analyses were selectively conducted to validate the analytical solutions based on the beam bending theory. The interface crack parameters, the stress intensity factor solutions, and the J integral solutions for welds in lap-shear specimens of different combinations of steel, aluminum, and magnesium, and the combination of aluminum and copper sheets of different thickness ratios are then presented for convenient fracture and fatigue analyses. The transition thickness ratios for critical crack locations for different combinations of dissimilar materials are then determined from the analytical solutions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Journal Article

Stress Intensity Factor Solutions for Welds in Lap-Shear Specimens under Clamped Loading Conditions

2016-04-05
2016-01-0504
Analytical stress intensity factor solutions for welds in lap-shear specimens of equal thickness under pinned and clamped loading conditions based on the beam bending theory are presented and examined. Finite element analyses are also employed to obtain the stress intensity factor solutions for welds in lap-shear specimens under both clamped and pinned loading conditions. The computational solutions are compared well with the analytical solutions. The results of the analytical and computational solutions indicate that the bending moments at the clamped edges reduce the mode I and II stress intensity factor solutions by about 7% to 10% for the given specimen geometry. The effects of the clamped grips depend on the ratio of the weld width to the specimen length. Comparisons of the stress intensity factor solutions suggest that the fatigue lives of the welds in lap-shear specimens under clamped loading conditions should be higher than those under pinned loading conditions.
Journal Article

Investigation of Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2016-04-05
2016-01-0501
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole are investigated based on experiments and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints were tested under cyclic loading conditions. Optical micrographs show that the failure modes of the FDS joints in specimens with and without clearance hole are quite similar under cyclic loading conditions. The fatigue lives of the FDS joints in specimens with clearance hole are longer than those of the FDS joints in specimens without clearance hole for the given load ranges under cyclic loading conditions. A structural stress fatigue life estimation model is adopted to estimate the fatigue lives of the FDS joints in lap-shear specimens under high-cycle loading conditions.
Journal Article

Fatigue Failure of Laser Welds in Lap-Shear Specimens of High Strength Low Alloy (HSLA) Steels under Cyclic Loading Conditions

2011-04-12
2011-01-0473
In this paper, the fatigue behavior of laser welds in lap-shear specimens of non-galvanized SAE J2340 300Y high strength low alloy (HSLA) steel sheets is investigated based on experimental observations and a fatigue life estimation model. Optical micrographs of the laser welds before and after failure under quasi static and cyclic loading conditions are examined. The micrographs show that the failure modes of laser welds under quasi-static and cyclic loading conditions are quite different. Under quasi-static loading conditions, the weld failure appears to be initiated from the base metal near the boundary of the base metal and the heat affected zone at a distance to the pre-existing crack tip, and the specimens fail due to the necking/shear of the lower left load carrying sheets.
Journal Article

Fatigue Behavior of Dissimilar Ultrasonic Spot Welds in Lap-Shear Specimens of Magnesium and Steel Sheets

2011-04-12
2011-01-0475
Fatigue behavior of dissimilar ultrasonic spot welds in lap-shear specimens of magnesium AZ31B-H24 and hot-dipped-galvanized mild steel sheets is investigated based on experimental observations, closed-form stress intensity factor solutions, and a fatigue life estimation model. Fatigue tests were conducted under different load ranges with two load ratios of 0.1 and 0.2. Optical micrographs of the welds after the tests were examined to understand the failure modes of the welds. The micrographs show that the welds mainly fail from kinked fatigue cracks growing through the magnesium sheets. The optical micrographs also indicate that failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the transverse crack growth mode under high-cycle loading conditions. The closed-form stress intensity factor solutions at the critical locations of the welds are used to explain the locations of fatigue crack initiation and growth.
Journal Article

Effects of Roller Diameter and Number on Fatigue Lives of Cam Roller Follower Bearings

2011-04-12
2011-01-0489
Effects of roller diameter and number on the contact pressures, subsurface stresses and the fatigue lives of cam roller follower bearings are investigated in this paper. Finite element analyses under plane strain conditions were conducted to identify the effects of the diameter and number of the rolling elements and the thickness of the outer ring. The fatigue life of the inner pin generally increases as the roller diameter increases. But, reducing the number of rollers to accommodate larger rollers does not necessarily increase the fatigue life. The inevitable decrease of the thickness of the outer ring due to the increase of the roller diameter results in the increase of compliance for the outer ring. This increase of compliance leads to excessive deformation of the outer ring and consequently more load must be carried by fewer number of rolling elements.
Journal Article

Failure Modes of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels under Quasi-Static and Cyclic Loading Conditions

2012-04-16
2012-01-0479
Failure modes of friction stir spot welds in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated under quasi-static and cyclic loading conditions based on experimental observations. Optical micrographs of dissimilar DP780GA/HSBS friction stir spot welds made by a concave tool before and after failure are examined. The micrographs indicate that the failure modes of the welds under quasi-static and cyclic loading conditions are quite similar. The micrographs show that the DP780GA/HSBS welds mainly fail from cracks growing through the upper DP780GA sheets where the concave tool was plunged into during the welding process. Based on the observed failure modes, a kinked fatigue crack growth model is adopted to estimate fatigue lives.
Journal Article

Effect of a Deformable Roller on Residual Stress Distribution for Elastic-Plastic Flat Plate Rolling under Plane Strain Conditions

2012-04-16
2012-01-0190
In this paper, the differences of the residual stresses due to rolling in a finite elastic-plastic plate by rigid and elastic deformable rollers at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the rollers are modeled both as rigid and linear elastic, and have frictionless contact with the elastic-plastic finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. Two new numerical schemes are developed to represent the elastic roller to model the indentation and rolling. The results of the contact pressure and subsurface stress distributions from the two numerical schemes are almost identical.
X