Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

4 L Light Duty LPG Engine Evaluated for Heavy Duty Application

2010-05-05
2010-01-1463
Many applications of liquefied petroleum gas (LPG) to commercial vehicles have used their corresponding diesel engine counterparts for their basic architecture. Here a review is made of the application to commercial vehicle operation of a robust 4 L, light-duty, 6-cylinder in-line engine produced by Ford Australia on a unique long-term production line. Since 2000 it has had a dedicated LPG pick-up truck and cab-chassis variant. A sequence of research programs has focused on optimizing this engine for low carbon dioxide (CO₂) emissions. Best results (from steady state engine maps) suggest reductions in CO₂ emissions of over 30% are possible in New European Drive Cycle (NEDC) light-duty tests compared with the base gasoline engine counterpart. This has been achieved through increasing compression ratio to 12, running lean burn (to λ = 1.6) and careful study (through CFD and bench tests) of the injected LPG-air mixing system.
Journal Article

Mixture Preparation Effects on Gaseous Fuel Combustion in SI Engines

2009-04-20
2009-01-0323
This paper presents a comparison of the influence of different mixture preparation strategies on gaseous fuel combustion in SI engines. Three mixture preparation strategies are presented for a dedicated LPG fuelled engine, showing varying results - gaseous phase port injection (PFI-G), liquid-phase port injection (PFI-L) and gaseous-phase throttle-body injection (TBI-G). Previous work by the authors has shown considerable differences in emissions and thermal efficiency between different fuelling strategies. This paper extends this work to the area of combustion characteristics and lean limit operation and closer analyses the differences between these systems. A dedicated LPG in-line six cylinder engine with compression ratio increased to 11.7:1 (up from the standard 9.65:1) was tested over a range of speed/torque conditions representing most of the steady-state parts of the Euro drive-cycle for light duty-vehicles. The air-fuel ratio was varied from lambda 1.0 to the lean limit.
Technical Paper

Why Liquid Phase LPG Port Injection has Superior Power and Efficiency to Gas Phase Port Injection

2007-08-05
2007-01-3552
This paper reports comparative results for liquid phase versus gaseous phase port injection in a single cylinder engine. It follows previous research in a multi-cylinder engine where liquid phase was found to have advantages over gas phase at most operating conditions. Significant variations in cylinder to cylinder mixture distribution were found for both phases and leading to uncertainty in the findings. The uncertainty was avoided in this paper as in the engine used, a high speed Waukesha ASTM CFR, identical manifold conditions could be assured and MBT spark found for each fuel supply system over a wide range of mixtures. These were extended to lean burn conditions where gaseous fuelling in the multi-cylinder engine had been reported to be at least an equal performer to liquid phase. The experimental data confirm the power and efficiency advantages of liquid phase injection over gas phase injection and carburetion in multi-cylinder engine tests.
Technical Paper

A Before and After Study of the Change to Unleaded Gasoline-Test Results from EPA and Other Cycles

1990-02-01
900150
A fleet of 50, 1986-1987 model year cars designed for unleaded gasoline has been tested on the road and on a chassis dynamometer over 5 driving cycles and a wide range of other manoeuvres including steady speeds. It was found that the fuel consumption of this fleet was 17 to 23% (depending on test cycle) less than that of a corresponding fleet to leaded fuelled cars of 1980 model year average. Exhaust emissions were significantly lowered in the range of 45 to 93%. However trend line analysis of the several data sets indicates that the ULG fleet has about 6% higher fuel consumption than would have been expected if there had been a continuing evolution of leaded vehicle technology. The data base produced has applicability to a wide range of planning and design tasks, and those illustrated indicate the effects of speed limit changes and advisory speed signs on fuel consumption and emissions.
Technical Paper

Gas Assisted Jet Ignition of Ultra-Lean LPG in a Spark Ignition Engine

2009-04-20
2009-01-0506
Gas assisted jet ignition is an advanced prechamber ignition process that allows ignition of ultra lean mixtures in an otherwise standard spark ignition engine. The results presented in this paper indicate that in a gas assisted jet ignition system fuelled with LPG in both the main chamber and prechamber, the lean limit can be extended to between λ = 2-2.35, depending on the load and speed. Although the fuel combinations that employ H2 as the prechamber fuel can extend the lean limit furthest (λ = 2.5-2.6), the extension enabled by the LPG-LPG prechamber-main chamber combination provides lower NOx emission levels at similar λ. In addition, when LPG is employed in place of gasoline as the main chamber fuel, hydrocarbon emissions are significantly reduced, however with a slight penalty in indicated mean effective pressure due to the gaseous state of the LPG.
Technical Paper

Modeling Alternative Prechamber Fuels in Jet Assisted Ignition of Gasoline and LPG

2009-04-20
2009-01-0721
Gas assisted jet ignition is a prechamber combustion initiation system for conventional spark ignition engines. With the system, a chemically active turbulent jet is used to initiate combustion in lean fuel mixtures enabling reliable combustion over a much broader range of air-fuel ratios. The extended range is due to the distributed ignition source provided by the jet, which can overcome the problems of poorly mixed main chamber charges and slower burning fuels. In addition, the ability to reliably ignite lean mixtures improves the thermal efficiency and enables ultra low emission levels. Experiments together with flame propagation modeling completed using STAR-CD with CHEMKIN Kinetics were done in order to examine the effects of numerous prechamber fuels on the ignition of the main fuel, which consisted of either liquefied petroleum gas (LPG) or gasoline.
Technical Paper

Exploring the Charge Composition of SI Engine Lean Limits

2009-04-20
2009-01-0929
In this paper the experimental performance of the lean limits is examined for two different types of engines the first a dedicated LPG high compression ratio 2-valve per cylinder engine (Ford of Australia MY 2001 AU Falcon) and the second a gasoline moderate compression 4-valve per cylinder variant of the same engine (Ford of Australia MY 2006 BF Falcon). The in-cylinder composition at the lean limit over a range of steady state operating conditions is estimated using a quasi-dimensional model. This makes it possible to take into account the effects of both residual fraction and fresh charge diluents (EGR and excess air) that allow the exploration of a modeled lean limit performance [1, 2]. The results are compared to the predictions from a model for combustion variability applied to the quasi-dimensional model operating in optimization mode.
Technical Paper

Changes to Fim-Motogp Rules to Reduce Costs and Make Racing More Directly Relevant to Road Motorcycle Development

2008-12-02
2008-01-2957
The specific power densities and therefore the level of sophistication and costs of FIM-MOTOGP engines 800 cm3 in capacity have reached levels similar to those of the traditionally much more expensive FIA-Formula One engines and some racing developments have no application at all in the development of production bikes. The aim of the paper is therefore to review FIM-MOTOGP engine rules and make recommendations that could reduce costs and make racing more directly relevant to the development of production bikes while enhancing the significant interest in technical innovation by the sports' fans.
Technical Paper

The Lean Burn Direct-Injection Jet-Ignition Flexi Gas Fuel LPG/CNG Engine

2009-11-02
2009-01-2790
This paper explores through engine simulations the use of LPG and CNG gas fuels in a 1.5 liter Spark Ignition (SI) four cylinder gasoline engine with double over head camshafts, four valves per cylinder equipped with a novel mixture preparation and ignition system comprising centrally located Direct Injection (DI) injector and Jet Ignition (JI) nozzles. With DI technology, the fuel may be introduced within the cylinder after completion of the valve events. DI of fuel reduces the embedded air displacement effects of gaseous fuels and lowers the charge temperature. DI also allows lean stratified bulk combustion with enhanced rate of combustion and reduced heat transfer to the cylinder walls creating a bulk lean stratified mixture.
Technical Paper

Performance Comparison of Engine Down-Sized to High Efficieincy ICEs in Optimized Hybrid Vehicles

2012-04-16
2012-01-1033
A real time energy management (EMS) optimizing algorithm is introduced that performs similar to offline dynamic programming (DP) for parallel HEVs. The EMS and the DP are compared, especially with the addition of a local hill climbing technique, to the example performance prediction of the fuel consumption of a 1.67 tonne large car using a 50 kW Honda Insight engine (representing 65% power reduction from standard) as reference. Then the performance of the vehicle in HEV mode, with a parallel 30 kW motor/generator is examined. The average improvement of this vehicle over five drive cycles from around the world is about 50% reduction in fuel consumption. Next the engine is replaced with an advanced SI turbocharged engine with assisted ignition which returns the performance to that expected of this class of car i.e. 0-100 km/h acceleration time of 7 s. This results in a 14% average reduction in fuel consumption across the five cycles compared with the base Honda engine.
Technical Paper

Concept Car - Life Cycle Energy Analysis

1998-02-23
981154
The Australian Concept Car was developed with support from a wide range of industry and government sectors. The estimated energy consumption over the vehicle life cycle is presented relative to a typical Australian Upper Medium Class car fleet. Several assumptions are made about the performance of the prototype car, when extrapolating it to a production counterpart for the comparison. Production methods are one area, covered by a survey of suppliers, and particularly in-service fuel use has had to be estimated using validated procedures. Uncertainties exist about the level of recycling at the end of the vehicles projected life after 225,000 km, leading to defined uncertainties. It is concluded that the concept car will have an energy reduction of 15-17.5% and the life cycle CO2 emissions will be reduced by a little less.
Technical Paper

Benefit from In-service Life Optimized for Minimum CO2 – Comparison of ICEVs, PHEVs, BEVs and FCEVs

2024-04-09
2024-01-2443
The 2023 FISITA White Paper (for which the author was a contributor) on managing in-service emissions and transportation options, to reduce CO2 (CO2-e or carbon footprint) from the existing vehicle fleet, proposed 6 levers which could be activated to complement the rapid transition to vehicles using only renewable energy sources. Another management opportunity reported here is optimizing the vehicle’s life in-service to minimize the life-cycle CO2 impact of a range of present and upcoming vehicles. This study of the US vehicle fleet has quite different travel and composition characteristics to European (EU27) vehicles. In addition, the embodied CO2 is based on ANL’s GREET data rather than EU27 SimaPro methodology. It is demonstrated that in-service, whole-of-life mileage has a significant influence on the optimum life cycle CO2 for BEVs and H2 fuelled FCEVs, as well as ICEs and PHEVs.
X