Refine Your Search


Search Results

Technical Paper

Abdominal Twin Pressure Sensors for the Assessment of Abdominal Injuries in Q Dummies: In-Dummy Evaluation and Performance in Accident Reconstructions

The Abdominal Pressure Twin Sensors (APTS) for Q3 and Q6 dummies are composed of soft polyurethane bladders filled with fluid and equipped with pressure sensors. Implanted within the abdominal insert of child dummies, they can be used to detect abdominal loading due to the belt during frontal collisions. In the present study - which is part of the EC funded CASPER project - two versions of APTS (V1 and V2) were evaluated in abdominal belt compression tests, torso flexion test (V1 only) and two series of sled tests with degraded restraint conditions. The results suggest that the two versions have similar responses, and that the pressure sensitivity to torso flexion is limited. The APTS ability to detect abdominal loading in sled tests was also confirmed, with peak pressures typically below 1 bar when the belt loaded only the pelvis and the thorax (appropriate restraint) and values above that level when the abdomen was loaded directly (inappropriate restraint).
Technical Paper

The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs

In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler).
Technical Paper

Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests

Despite the increasing knowledge of the thorax mechanics in impact loadings, the effects of inter-individual differences on the mechanical response are difficult to take into account. For example, the biofidelity corridors for the small female or large male are extrapolated from the midsize male corridors. The present study reports on the results of new tests performed on small female Post Mortem Human Subjects (PMHS), and compares them with test results on midsize male PMHS. Three tests in pure side impact and three tests in forward oblique impact were performed on the thorax of small female specimens. The average weight and stature were 43 kg and 1.58 m for the small female specimens. The initial speed of the impactor was 4.3 m/s. The mass and the diameter of the impactor face were respectively 23.4 kg and 130 mm. The instrumentation and methodology was the same as for the tests published in 2008 by Trosseille et al. on midsize male specimens.
Technical Paper

Thoracic Injury Investigation using PMHS in Frontal Airbag Out-of-Position Situations

Many studies have reported multiple rib fractures sustained by an Out-of-Position (OOP) driver subjected to a frontal airbag deployment, but the injury mechanisms and thresholds remain unclear. Two successive phases occur during the bag deployment: punch-out loading of the thorax, followed by a membrane effect (Horsch et al. 1990). The aim of this study was to investigate the thoracic injuries generated by each phase separately. Tests of nine post-mortem human surrogates (PMHS) were carried out on a static test bench using a driver side airbag module described by Petit et al. (2003). The steering wheel was replaced by a plate in order to increase the loading generated by the airbag. Three loading configurations were performed: membrane only, punch-out only, and both types combined. The membrane-only tests were performed with the thorax initially positioned at 13, 78 and 128 mm from the plate in order to vary the load magnitude.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.
Technical Paper

Comparison of the Thor, Hybrid Iii and Cadaver Lower Leg Dynamic Responses in Dorsiflexion

As of toady, statutory crash test dummies take neither bracing nor passive muscular effect into account in the lower limb area. The influence of the lower extremity musculature is however arising as a major concern for the study of front seat occupant protection. The lower extremity prototype of the THOR dummy, including a model of the human plantarflexion actuator passive response, was tested in dynamic dorsiflexion. A dynamic test series was performed on Thor-Lx under test conditions similar to those used by Portier et al., 1996, on cadavers and Hybrid III dummy. The test setup imposed a dynamic dorsiflexion to the foot by means of a load exerted under the ball of the foot with no impact velocity. The Thor-Lx and Hill responses are compared to cadaver responses. It is important to note that as of today there are no data available to demonstrate that the passive resistance of the cadaver is equivalent to resistance of a tensed human.
Technical Paper

Dynamic Biomechanical Dorsiflexion Responses and Tolerances of the Ankle Joint Complex

This paper presents comprehensive dorsiflexion responses and tolerances obtained from two types of dynamic tests on whole cadavers conducted at the Renault/PSA Laboratory of Accidentology and Biomechanics (LAB): sled tests and sub-system tests. In all the experiments (on whole cadavers), forces and moments within the ankle joint were accurately measured by means of a custom-designed 6-axis load cell implanted in the tibia, leaving all surrounding musculature intact. The results derived from both the sled tests and the subsystem tests are very similar. Moment-rotation curves are provided for the ankle joint. The force in the Achilles tendon which is not directly measured is calculated using the forces applied to the foot and the forces measured in the tibia.
Technical Paper

The Programmed Restraint System - A Lesson from Accidentology

Accident studies show that frontal collisions, both as regards the number of people killed and those seriously-injured, are by far the type of crash with the most serious consequences. In order to improve this situation, it is necessary to ensure that the means used to restrain occupants work as efficiently as possible, whilst preserving the occupant compartment and thus by eliminating intrusion on the occupant restrained by seat-belts and pretensioners. In frontal collisions where vehicle intrusion is minor, the main lesions caused to occupantss are thoracic, mainly rib fractures resulting from the seat-belt. In collisions where intrusion is substantial, the lower members are particularly vulnerable. In the coming years, we will see developments which include more solidly-built cars, as offset crash test procedures are widely used to evaluate the passive safety of production vehicles.
Technical Paper

Abdominal Response to High-Speed Seatbelt Loading

This study was conducted to address injury risk due to high-speed loading of the abdomen by a seatbelt during the pretension phase. Indeed, a better coupling of occupants to the structure of the vehicle in frontal impact can be achieved by a strong pretension of the lap belt. However, out of position considerations have to be taken into account in the development of pretension systems. In particular, when the lap belt is on the abdomen instead of the pelvis at the time of pretension, the penetration of the belt into the abdomen should not lead to injuries. Given the sensitivity of pyrotechnic pre-tensioners to the resistance that they encounter, it is important to have an understanding of the behaviors of both human and dummy abdomens in order to evaluate injury risk. These data are indispensable for the evaluation, with dummy tests, of the effects of pre-tensioners on occupants and for the estimation of the levels of injury risk.
Technical Paper

Laboratory Reconstructions of Real World Frontal Crash Configurations Using the Hybrid III and THOR Dummies and PMHS

Load-limiting belt restraints have been present in French cars since 1995. An accident study showed the greater effectiveness in thorax injury prevention using a 4 kN load limiter belt with an airbag than using a 6 kN load limiter belt without airbag. The criteria for thoracic tolerance used in regulatory testing is the sternal deflection for all restraint types, belt and/or airbag restraint. This criterion does not assess the effectiveness of the restraint 4 kN load limiter belt with airbag observed in accidentology. To improve the understanding of thoracic tolerance, frontal sled crashes were performed using the Hybrid III and THOR dummies and PMHS. The sled configuration and the deceleration law correspond to those observed in the accident study. Restraint conditions evaluated are the 6 kN load-limiting belt and the 4 kN load-limiting belt with an airbag. Loads between the occupant and the sled environment were recorded.
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
Technical Paper

Proposed Method for Development of Small Female and Midsize Male Thorax Dynamic Response Corridors in Side and Forward Oblique Impact Tests

Despite the increasing knowledge of the thorax mechanics, the effects of inter-individual differences on the mechanical response are difficult to take into account. Several methods are available in the literature to refine the biofidelity corridors or to extrapolate them to other populations (eg: children, small females, large males). Because of the lack of concrete cases, the relevance of the assumptions is rarely investigated. In 2014, Baudrit et al. published data on thorax dynamic responses of small female and midsize male Post Mortem Human Subjects in side and forward oblique impact tests. The impactor mass was 23.4 kg for all the tests and the nominal impact speed was 4.3 m/s. The diameter of the rigid disk was 130 and 152 mm respectively for the small female specimens and for the midsize male specimens. The authors found that the maximum impact force was a function of the total body mass for each loading.
Technical Paper

A Comparison of Sacroiliac and Pubic Rami Fracture Occurrences in Oblique Side Impact Tests on Nine Post Mortem Human Subjects

The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy / Mx peak values were 4500 N / 50 Nm, 2400 N / 130 Nm, and 5300 N / 150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s.
Technical Paper

Investigation of Pelvic Injuries on Eighteen Post Mortem Human Subjects Submitted to Oblique Lateral Impacts

The aim of this study was to investigate the sacroiliac joint injury mechanism. Two test configurations were selected from full scale car crashes conducted with the WorldSID 50th dummy resulting in high sacroiliac joint loads and low pubic symphysis force, i.e. severe conditions for the sacroiliac joint. The two test conditions were reproduced in laboratory using a 150-155 kg guided probe propelled respectively at 8 m/s and 7.5 m/s and with different shapes and orientations for the plate impacting the pelvis. Nine Post Mortem Human Subject (PMHS) were tested in each of the two configurations (eighteen PMHS in total). In order to get information on the time of fracture, eleven strain gauges were glued on the pelvic bone of each PMHS. Results - In the first configuration, five PMHS out of nine sustained AIS2+ pelvic injuries. All five presented sacroiliac joint injuries associated with pubic area injuries.
Technical Paper


Child restraint systems (CRS) for cars are intended to protect children in the case of a car accident. Unfortunately their effectiveness is still too low: in the range 30–50 % when it would be expected to be much higher. The low effectiveness of child restraint systems can partly be explained for the youngest passengers by their greater cervical vulnerability and for the oldest (from 3 to 12 years old) by the morphological immaturity of the pelvis. However, tools available to evaluate the effectiveness of CRS are very poor, as well as knowledge on injury mechanisms and criteria. The CREST project was created to develop the knowledge on child behaviour and tolerances, the final aim being to propose new test procedures for determining the effectiveness of CRS using instrumented child dummies. Eleven partners were involved, namely Fiat Auto-SpA (with Elasis), INRETS, PSA Peugeot Citroën, Renault, TNO Automotive, TUB, RICE, BAST, GDV, MUH, VTI.
Technical Paper

Methodological Aspects of an Experimental Research on Cerebral Tolerance on the Basis of Boxers' Training Fights

In order to obtain data about human head tolerance, the APR Laboratory of Biomechanics has developed a specific methodology for volunteer boxers. These ones are used because they expose themselves, in their normal body activities, to direct head impacts similar in nature to those experienced by vehicle occupants under crash conditions. This paper describes the specific experimental technique that permits association of the severity of the blows, measured in terms of physical parameters, to corresponding physiological effects, measured in medical terms.
Technical Paper

Neck Injury Criteria for Children from Real Crash Reconstructions

In view of the lack of data concerning child protection, an accidentological and experimental work was engaged. The goal of this international research involving experts from seven countries was two-fold: In one hand, to establish protection principles, gathering and analysing real crashes involving restrained children. In the other hand, to identify and to quantify injury mechanisms in order to increase knowledge on child tolerances. To realize this second part, real crash reconstructions were performed, in order to correlate observed injuries with recorded parameters on dummies. This paper mainly presents four real crashes with the corresponding reconstructions. A special analysis of injury mechanisms in relation with their respective pertinent parameters is then proposed.
Technical Paper

Validation Study of a 3D Finite Element Head Model Against Experimental Data

Very few finite element head models have been validated as required before being used to study brain injury mechanisms. This paper deals with the validation study of a 3D head model [1] against five cadaver tests [2]. It evaluates the current model ability to simulate brain responses and draws the research lines to improve it. Velocities on the closed rigid skull model were fixed to duplicate experimental applied loads. Validation parameters were constituted by three intra-cranial accelerations, three epidural pressures and in two cases, two extra pressures in the ventricles. The model response matched experimental results in terms of trend but presented significant oscillations. Moreover, there was a shift between experimental and numerical pressure curves. Brain material damping was introduced but numerical oscillations were slightly reduced.
Technical Paper

Biomechanical Response and Physical Properties of the Leg, Foot, and Ankle

The anatomical dimensions, inertial properties, and mechanical responses of cadaver leg, foot, and ankle specimens were evaluated relative to those of human volunteers and current anthropometric test devices. Dummy designs tested included the Hybrid III, Hybrid III with soft joint stops, ALEX I, and the GM/FTSS lower limbs. Static and dynamic tests of the leg, foot, and ankle were conducted at the laboratories of the Renault Biomedical Research Department and the University of Virginia. The inertial and geometric properties of the dummy lower limbs were measured and compared with cadaver properties and published volunteer values. Compression tests of the leg were performed using static and dynamic loading to determine compliance of the foot and ankle. Quasi-static rotational properties for dorsiflexion and inversion/eversion motion were obtained for the dummy, cadaver, and volunteer joints of the hindfoot.
Technical Paper

Relation Between Sacroilium and Other Pelvic Fractures Based on Real-World Automotive Accidents

The study firstly aimed at looking whether sacroilium (SI) fractures could be sustained as unique pelvic injuries in side impact real world automotive accidents. Secondarily, the sacroilium fractures observed in conjunction with other pelvic fractures were analyzed to investigate the existence of injury association patterns. Two real world accident databases were searched for SI fractures. The occupants selected were front car passengers older than 16, involved in side, oblique or frontal impact, with AIS2+ pelvic injuries. In frontal impact, only the belted occupants were selected. The cases were sorted by the principal direction of force (dof) and the type of pelvic injury, namely SI, pubic rami, iliac wing, acetabulum, pubic symphysis, and sacrum injuries. The relation between SI and pubic rami injuries were investigated first. The first database is an accident database composed of cases collected in France by car manufacturers over a period of approximately 40 years.