Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Comparison of the Thor, Hybrid Iii and Cadaver Lower Leg Dynamic Responses in Dorsiflexion

1999-10-10
99SC10
As of toady, statutory crash test dummies take neither bracing nor passive muscular effect into account in the lower limb area. The influence of the lower extremity musculature is however arising as a major concern for the study of front seat occupant protection. The lower extremity prototype of the THOR dummy, including a model of the human plantarflexion actuator passive response, was tested in dynamic dorsiflexion. A dynamic test series was performed on Thor-Lx under test conditions similar to those used by Portier et al., 1996, on cadavers and Hybrid III dummy. The test setup imposed a dynamic dorsiflexion to the foot by means of a load exerted under the ball of the foot with no impact velocity. The Thor-Lx and Hill responses are compared to cadaver responses. It is important to note that as of today there are no data available to demonstrate that the passive resistance of the cadaver is equivalent to resistance of a tensed human.
Technical Paper

Neck Injury Criteria for Children from Real Crash Reconstructions

1993-11-01
933103
In view of the lack of data concerning child protection, an accidentological and experimental work was engaged. The goal of this international research involving experts from seven countries was two-fold: In one hand, to establish protection principles, gathering and analysing real crashes involving restrained children. In the other hand, to identify and to quantify injury mechanisms in order to increase knowledge on child tolerances. To realize this second part, real crash reconstructions were performed, in order to correlate observed injuries with recorded parameters on dummies. This paper mainly presents four real crashes with the corresponding reconstructions. A special analysis of injury mechanisms in relation with their respective pertinent parameters is then proposed.
Technical Paper

Update of the WorldSID 50th Male Pelvic Injury Criterion and Risk Curve

2018-04-03
2018-01-0539
Petit et al. 2015 and Lebarbé et al. 2016 reported on two studies where the injury mechanism and threshold of the sacroiliac joint were investigated in two slightly oblique crash test conditions from 18 Post Mortem Human Subjects (PMHS) tests. They concluded that the sacroiliac joint fractures were associated with pubic rami fractures. These latter being reported to occur first in the time history. Therefore it was recommended not to define a criterion specific for the sacroiliac joint. In 2012, injury risk curves were published for the WorldSID dummy by Petitjean et al. For the pelvis, dummy and PMHS paired tests from six configurations were used (n = 55). All of these configurations were pure lateral impacts. In addition, the sacroiliac joint and femur neck loads were not recorded, and the dummy used was the first production version (WorldSID revision 1). Since that time, the WorldSID was updated several times, including changes in the pelvis area.
Technical Paper

Methodological Aspects of an Experimental Research on Cerebral Tolerance on the Basis of Boxers' Training Fights

1987-11-01
872195
In order to obtain data about human head tolerance, the APR Laboratory of Biomechanics has developed a specific methodology for volunteer boxers. These ones are used because they expose themselves, in their normal body activities, to direct head impacts similar in nature to those experienced by vehicle occupants under crash conditions. This paper describes the specific experimental technique that permits association of the severity of the blows, measured in terms of physical parameters, to corresponding physiological effects, measured in medical terms.
Technical Paper

Sensitivity of the WorldSID 50th and ES-2re Thoraces to Loading Configuration

2010-11-03
2010-22-0013
An ideal injury criterion should be predictive of the risk of injury across the range of loading conditions where it may be applied. The injury risk curve associated with this criterion should be applicable to all loading conditions. With respect to side impact, the injury risk curve should apply to pure lateral or oblique loading by rigid and padded walls, as well as airbags. Trosseille et al., (2009) reported that the number of fractured ribs was higher in pure lateral impact than in forward oblique interaction with an airbag. A good dummy criterion should be able to account for this difference. To evaluate various injury criteria with the WorldSID 50th and ES-2re dummies, the dummies were exposed to the same airbag loadings as the PMHS. The criteria measured in the dummy tests were paired with the rib fractures from the PMHS tests.
Technical Paper

The Effect of Angle on the Chest Injury Outcome in Side Loading

2009-11-02
2009-22-0014
Thoracic injury criteria and injury risk curves in side impact are based on impactor or sled tests, with rigid or padded surfaces while airbags are very common on current cars. Besides, the loading is generally pure lateral while real crashes or regulations can generate oblique loadings. Oblique tests were found in the literature, but no conclusion was drawn with regard to the effect of the direction on the injury outcome. In order to address these two limitations, a series of 17 side airbag tests were performed on Post Mortem Human Subjects (PMHS) at different severities and angles. The subjects were instrumented with accelerometers on the spine and strain gauges on the ribs. They were loaded by an unfolded airbag at different distances in pure lateral or 30 degrees forward. The airbag forces ranged from 1680 N to 6300 N, the injuries being up to 9 separated fractured ribs. This paper provides the test results in terms of physical parameters and injury outcome of the 17 subjects.
Technical Paper

Injury Risk Curves for the WorldSID 50th Male Dummy

2009-11-02
2009-22-0016
The development of the WorldSID 50th percentile male dummy was initiated in 1997 by the International Organization for Standardization (ISO/SC12/TC22/WG5) with the objective of developing a more biofidelic side impact dummy and supporting the adoption of a harmonized dummy into regulations. More than 45 organizations from all around the world have contributed to this effort including governmental agencies, research institutes, car manufacturers and dummy manufacturers. The first production version of the WorldSID 50th male dummy was released in March 2004 and demonstrated an improved biofidelity over existing side impact dummies. Full-scale vehicle tests covering a wide range of side impact test procedures were performed worldwide with the WorldSID dummy. However, the vehicle safety performance could not be assessed due to lack of injury risk curves for this dummy. The development of these curves was initiated in 2004 within the framework of ISO/SC12/TC22/WG6 (Injury criteria).
Technical Paper

Evaluation of Thoracic Deflection as an Injury Criterion for Side Impact Using a Finite Elements Thorax Model

2009-11-02
2009-22-0006
This study aims to investigate the relationship between the number of rib fractures and the thoracic deflection in side impact, and in particular its variability with respect to various loading configurations. The relevance of thoracic deflection as an injury criterion depends on the existence or not of this variability. Few studies were dedicated to this issue in the literature. First, a validation database was established, which covers different impact directions (frontal, lateral and oblique), different loading types (impactor, belt and airbag), and different injury levels (from the absence of, to presence of numerous ribs fractured). The HUMOS human body model was then modified and validated versus the database. Besides the typical validation in terms of global response, particular attention was paid to validate the model with respect to the ribcage strain profile, the occurrence of rib fractures and their locations.
Technical Paper

Rib Cage Strain Pattern as a Function of Chest Loading Configuration

2008-11-03
2008-22-0009
Rib fractures are the most frequent types of AIS3+ chest injuries and constitute a good indication of severity. However, the behavior of the rib cage is not well documented, and though chest external measurements are often provided in the literature, the strains of the ribs themselves during a crash remain unknown. In order to address this issue, a test protocol was developed, where the ribs of 8 PMHS were equipped with up to 96 strain gauges. In a first series of 3 tests, the subjects were seated upright and their chests were loaded by a 23.4 kg impactor propelled at 4.3 m/s in 0° (pure frontal), 60° (oblique) and 90° (pure lateral) directions. In a second series of 3 tests, the subjects were loaded by the deployment of an unfolded airbag in the same 3 directions. Finally, a third series of 2 tests was performed with airbags at different distances from the subjects, in a pure lateral direction. This paper presents the results of the tests and an analysis of the strain patterns.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

2008-11-03
2008-22-0011
According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.
Technical Paper

Statistical Simulations to Evaluate the Methods of the Construction of Injury Risk Curves

2011-11-07
2011-22-0015
Several statistical methods are currently used to build injury risk curves in the biomechanical field. These methods include the certainty method (Mertz et al. 1996), Mertz/Weber method (Mertz and Weber 1982), logistic regression (Kuppa et al. 2003, Hosmer and Lemeshow 2000), survival analysis with Weibull distribution (Kent et al. 2004, Hosmer and Lemeshow 2000), and the consistent threshold estimate (CTE) (Nusholtz et al. 1999, Di Domenico and Nusholtz 2005). There is currently no consensus on the most accurate method to be used and no guidelines to help the user to choose the more appropriate one. Injury risk curves built for the WorldSID 50th side impact dummy with these different methods could vary significantly, depending on the sample considered (Petitjean et al. 2009). As a consequence, further investigations were needed to determine the fields of application of the different methods and to recommend the best statistical method depending on the biomechanical sample considered.
Technical Paper

Study of Rib Fracture Mechanisms Based on the Rib Strain Profiles in Side and Forward Oblique Impact

2011-11-07
2011-22-0009
Rib fractures constitute a good indication of severity as there are the most frequent type of AIS3+ chest injuries. In 2008, Trosseille et al. showed a promising methodology to exhibit the rib fracture mechanisms, using strain gauges glued on the ribs of Post-Mortem Human Subjects (PMHS) and developing a specific signal analysis. In 2009, they published the results of static airbag tests performed on 50th percentile male PMHS at different distances and angles (pure lateral and 30 degrees forward oblique direction). To complete these already published data, a set of 8 PMHS lateral and oblique impactor tests were performed with the same methodology. The rib cages were instrumented with more than 100 strain gauges on the ribs, cartilage and sternum. A 23.4 kg impactor was propelled at 4.3 or 6.7 m/s. The forces applied onto the PMHS at 4.3 m/s ranged from 1.6 kN to 1.9 kN and the injuries varied from 4 to 13 rib fractures.
Technical Paper

Abdominal Twin Pressure Sensors for the Assessment of Abdominal Injuries in Q Dummies: In-Dummy Evaluation and Performance in Accident Reconstructions

2012-10-29
2012-22-0010
The Abdominal Pressure Twin Sensors (APTS) for Q3 and Q6 dummies are composed of soft polyurethane bladders filled with fluid and equipped with pressure sensors. Implanted within the abdominal insert of child dummies, they can be used to detect abdominal loading due to the belt during frontal collisions. In the present study - which is part of the EC funded CASPER project - two versions of APTS (V1 and V2) were evaluated in abdominal belt compression tests, torso flexion test (V1 only) and two series of sled tests with degraded restraint conditions. The results suggest that the two versions have similar responses, and that the pressure sensitivity to torso flexion is limited. The APTS ability to detect abdominal loading in sled tests was also confirmed, with peak pressures typically below 1 bar when the belt loaded only the pelvis and the thorax (appropriate restraint) and values above that level when the abdomen was loaded directly (inappropriate restraint).
Technical Paper

The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs

2014-11-10
2014-22-0008
In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler).
Technical Paper

Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests

2014-11-10
2014-22-0004
Despite the increasing knowledge of the thorax mechanics in impact loadings, the effects of inter-individual differences on the mechanical response are difficult to take into account. For example, the biofidelity corridors for the small female or large male are extrapolated from the midsize male corridors. The present study reports on the results of new tests performed on small female Post Mortem Human Subjects (PMHS), and compares them with test results on midsize male PMHS. Three tests in pure side impact and three tests in forward oblique impact were performed on the thorax of small female specimens. The average weight and stature were 43 kg and 1.58 m for the small female specimens. The initial speed of the impactor was 4.3 m/s. The mass and the diameter of the impactor face were respectively 23.4 kg and 130 mm. The instrumentation and methodology was the same as for the tests published in 2008 by Trosseille et al. on midsize male specimens.
Technical Paper

Investigations on the Belt-to-Pelvis Interaction in Case of Submarining

2006-11-06
2006-22-0003
This study focuses on the phenomenon of lap belt slip on the iliac spines of the pelvis, commonly named “submarining ”. The first objective was to compare the interaction between the pelvis and the lap belt for both dummies and Post Mortem Human Subjects (PMHS). The second objective was to identify parameters influencing the lap belt hooking by the pelvis. For that purpose, a hydraulic test device was developed in order to impose the tension and kinematics of the lap belt such that they mimic what occurs in frontal car crashes. The pelvis was firmly fixed on the frame of this sub-system test-rig, while the belt anchorages were mobile. Fourteen tests on four Post-Mortem Human Subjects (PMHS) and fifteen tests on the THOR NT, Hybrid III 50th and Hybrid III 95th percentile dummies were carried out. The belt tension was kept constant while a dynamic rotation was imposed on the belt anchorages.
Technical Paper

Side Impact: Influence of Impact Conditions and Bone Mechanical Properties on Pelvic Response Using a Fracturable Pelvis Model

2006-11-06
2006-22-0004
This study aimed at determining the influence of impact conditions and occupant mechanical properties on pelvic response in side impact. First, a fracturable pelvis model was developed and validated against dynamic tests on isolated pelvic bones and on whole cadavers. By coupling a fixed cortical bone section thickness within a single subject's pelvis and across the population with a parametric material law for the pelvic bone, this model reproduced the pelvic response and tolerance variation among individuals. Three material laws were also identified to represent fragile, medium and strong pelvic bones for the 50th percentile male. With this model, the influence of impact mass, velocity and surface shape on pelvic response was examined. Results indicated that the shape difference between four main impactors reported in the literature has little effect on the pelvic response.
Technical Paper

Thoracic Injury Investigation using PMHS in Frontal Airbag Out-of-Position Situations

2005-11-09
2005-22-0015
Many studies have reported multiple rib fractures sustained by an Out-of-Position (OOP) driver subjected to a frontal airbag deployment, but the injury mechanisms and thresholds remain unclear. Two successive phases occur during the bag deployment: punch-out loading of the thorax, followed by a membrane effect (Horsch et al. 1990). The aim of this study was to investigate the thoracic injuries generated by each phase separately. Tests of nine post-mortem human surrogates (PMHS) were carried out on a static test bench using a driver side airbag module described by Petit et al. (2003). The steering wheel was replaced by a plate in order to increase the loading generated by the airbag. Three loading configurations were performed: membrane only, punch-out only, and both types combined. The membrane-only tests were performed with the thorax initially positioned at 13, 78 and 128 mm from the plate in order to vary the load magnitude.
Technical Paper

Assessment of the Pubic Force as a Pelvic Injury Criterion in Side Impact

2007-10-29
2007-22-0019
In the literature, injuries at the ischio or ilio pubic ramus level are reported to occur to approximately ¾ of the occupants injured at the pelvis during side impact. Assuming that the load going through the pubis was a good indicator of the ramus stress, the pubic force was widely accepted as a protection criterion for pelvic fractures on side impact dummies. However, no data regarding the actual loads going through the pubis is currently available in the literature for Post Mortem Human Subjects (PMHS) in dynamic conditions. The goal of this study was to determine pelvic biofidelity specifications in terms of load path, to evaluate the pertinence of the pubic force as a criterion, and to develop a pelvic injury risk curve as a function of the pubic force. For that purpose, a pubic load cell was developed for PMHS use, and 16 side impact tests were performed on 8 PMHS using boundary conditions similar to impactor tests and sled tests reported in the literature.
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

2003-10-27
2003-22-0011
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
X