Refine Your Search

Search Results

Technical Paper

Reliability-Based Design Optimization of a Vehicle Exhaust System

2004-03-08
2004-01-1128
This paper focuses on the methodology development and application of reliability-based design optimization to a vehicle exhaust system under noise, vibration and harshness constraints with uncertainties. Reliability-based design optimization provides a systematic way for considering uncertainties in product development process. As traditional reliability analysis itself is a design optimization problem that requires many function evaluations, it often requires tremendous computational resources and efficient optimization methodologies. Multiple functional response constraints and large number of design variables add further complexity to the problem. This paper investigates an integrated approach by taking advantages of variable screening, design of experiments, response surface model, and reliability-based design optimization for problems with functional responses. A typical vehicle exhaust system is used as an example to demonstrate the methodology.
Technical Paper

A Study of Model Validation Method for Dynamic Systems

2010-04-12
2010-01-0419
This paper presents an enhanced Bayesian based model validation method together with probabilistic principal component analysis (PPCA). The PPCA is employed to address multivariate correlation and to reduce the dimensionality of the multivariate functional responses. The Bayesian hypothesis testing is used to quantitatively assess the quality of a multivariate dynamic system. Unlike the previous approach, the differences between test and CAE results are used for dimension reduction though PPCA and then to assess the model validity. In addition, physics-based thresholds are defined and transformed to the PPCA space for Bayesian hypothesis testing. This new approach resolves some critical drawbacks of the previous method and provides desirable properties of a validation method, e.g., symmetry. A dynamic system with multiple functional responses is used to demonstrate this new approach.
Technical Paper

Occupant Model Correlation Using a Genetic Algorithm

2004-03-08
2004-01-1624
Computer modeling has played important roles and gained great momentum in product development as numerical methods, computer software and hardware technologies advance rapidly. Computer models (e.g. MADYMO) that simulate vehicle interior, restraint system and occupants in various crash modes have been widely used to improve occupant safety. However, to build good occupant models, engineers often have to spend tremendous time on model correlation. The challenge of model correlation for occupant safety is that it requires matching numerous injury curves with tests, for examples: head G, chest G, chest deflection, shoulder belt load, femur loads, neck load and moment. Traditionally, this model correlation task is done by a trial and error method. This paper attempts to solve the problem systematically by using a genetic algorithm. It demonstrates that the genetic algorithm is a valuable optimization tool to obtain a high quality MADYMO model.
Technical Paper

Improving Robustness Assessment Quality Via Response Decomposition

2006-04-03
2006-01-0760
Response surface methods have been widely used in robust design for reducing turn-around time and improving quality. That is, from a given set of CAE data (design-of-experiments results), many different robust optimization studies can be performed with different constraints and objectives without large, recurring, computation costs. However, due to the highly nonlinear and non-convex nature of occupant injury responses, it is difficult to generate high quality response surface models from them. In this paper, we apply a cross validation technique to estimate the accuracy of response surface models, particularly in the context of robustness assessment. We then decompose selected occupant injury responses into more fundamental signals before fitting surfaces to improve the predictivity of the response surface models. Real-world case studies on an occupant restraint system robust design problem are used to demonstrate the methodology.
Technical Paper

Neck Injury Prevention in Low Speed Rear Impact

2007-04-16
2007-01-0378
Head restraint has become an important element in seat design due to the severity of neck injuries in rear-end collisions. The objective of this paper is to present an analytical and efficient approach to assist engineers in analyzing the design parameters of the seat and head restraint system. The CAE simulation models with Bio-RID dummy were assembled to correlate to 10 mph rear impact sled tests. The correlated models were then adopted in Design of Experiment (DOE) studies to explore all the significant design parameters influencing occupant neck injuries. Based on the results from the DOE studies, we are able to improve the seat and head restraint designs for reducing the risk of neck injuries in rear-end impacts.
Technical Paper

Experience With Response Surface Methods for Occupant Restraint System Design

2005-04-11
2005-01-1306
Response surface methodologies (RSMs) have been proposed as surrogate models in vehicle design processes to gain insight and improve turnaround time for optimization and robust design. However, when studying the vehicle occupants during crash events, nonlinearities in responses, coupled with the relatively high dimensionality of vehicle design, can yield misleading results with little or no warning from the response surface algorithms. To ensure the accuracy and reliability of RSMs, fast and dependable error estimation procedures are essential for enlightening how well a response surface predicts highly nonlinear phenomena, given a limited number of model simulations. Such error estimation methods are also useful for providing guidance on how many simulation runs are needed for reliable RSM construction. In this paper, a fast cross validation error estimate procedure is first presented, applied to the multivariable adaptive regression spline (MARS) response surface method.
Technical Paper

An Effective Optimization Strategy for Structural Weight Reduction

2010-04-12
2010-01-0647
Multidisciplinary design optimization (MDO) methods are commonly used for weight reduction in automotive industry. The design variables for MDO are often selected based on critical parts, which usually are close to optimal after many design iterations. As a result, the real weight reduction benefit may not be fully realized due to poor selection of design parameters. In addition, most applications require running design of experiments (DOE) to explore the full design space and to build response surfaces for optimization. This approach is often too costly if too many design variables are simultaneously considered. In this research, an alternative approach to address these issues is presented. It includes two optimization phases. The first phase uses critical parts for design iterations and the second phase use non-critical for weight reduction. A vehicle body structure is used to demonstrate the proposed strategy to show its effectiveness.
Technical Paper

Auto-Correlation of an Occupant Restraint System Model Using a Bayesian Validation Metric

2009-04-20
2009-01-1402
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Various computer models for occupant restraint systems are developed. The models simulate the vehicle interior, restraint system, and occupants in different crash scenarios. In order to improve the efficiency during the product development process, the model quality and its predictive capabilities must be ensured. In this research, an objective model validation metric is developed to evaluate the model validity and its predictive capabilities when multiple occupant injury responses are simultaneously compared with test curves. This validation metric is based on the probabilistic principal component analysis method and Bayesian statistics approach for multivariate model assessment. It first quantifies the uncertainties in both test and simulation results, extracts key features, and then evaluates the model quality.
Journal Article

A Comparative Benchmark Study of using Different Multi-Objective Optimization Algorithms for Restraint System Design

2014-04-01
2014-01-0564
Vehicle restraint system design is a difficult optimization problem to solve because (1) the nature of the problem is highly nonlinear, non-convex, noisy, and discontinuous; (2) there are large numbers of discrete and continuous design variables; (3) a design has to meet safety performance requirements for multiple crash modes simultaneously, hence there are a large number of design constraints. Based on the above knowledge of the problem, it is understandable why design of experiment (DOE) does not produce a high-percentage of feasible solutions, and it is difficult for response surface methods (RSM) to capture the true landscape of the problem. Furthermore, in order to keep the restraint system more robust, the complexity of restraint system content needs to be minimized in addition to minimizing the relative risk score to achieve New Car Assessment Program (NCAP) 5-star rating.
Technical Paper

Robust Design for Occupant Restraint System

2005-04-11
2005-01-0814
Computational analysis of occupant safety has become an efficient tool to reduce the development time for a new product. Multi-body computer models (e.g. Madymo models) that simulate vehicle interior, restraint system and occupants in various crash modes have been widely used in the occupant safety area. To ensure public safety, many injury numbers, such as head injury criteria, chest acceleration, chest deflection, femur loads, neck load, and neck moment, are monitored. Deterministic optimization methods have been employed to meet various safety requirements. However, with the further emphasis on product quality and consistency of product performance, variations in modeling, simulation, and manufacturing, need to be considered.
Technical Paper

Optimization of a Vehicle Restraint System Using a Genetic Algorithm

2005-04-11
2005-01-1227
In an attempt to make vehicle restraint systems more effective in protecting occupants, many advanced safety technologies have been introduced. These advanced technologies are mostly adaptive technologies. The ability of a restraint system to adapt itself to crash parameters like crash speed and type, occupant size, and belt-usage status, offers possible enhancements in occupant protection. Designing a restraint system boils down to the determination of the design variables of either the restraint technologies or vehicle interiors. A restraint system of adaptive technologies involves much more design variables than a restraint system containing only load-limited belts and dual stage inflators, possibly posing a challenge to safety engineers. In this paper, a genetic algorithm (GA) tailored for restraint system optimization will be presented.
Technical Paper

A New Hybrid Stochastic Optimization Method for Vehicle Structural Design

2003-03-03
2003-01-0881
With the continuous improvement of powerful computers, vehicle structural designs have been addressed using computational methods, resulting in more efficient development of new vehicles. Most simulation-based optimization generates deterministic optimal designs without considering variability effects in modeling, simulation, and/or manufacturing. This paper presents a new hybrid stochastic optimization method for vehicle side impact design. Nonlinear response surface models are employed as the ’real’ models for the side impact related performance functions to conduct this study. The main goal is to maintain or enhance the vehicle side impact performance while minimizing the vehicle weight under various uncertainties. The new method alleviates the computational burden of excessive model evaluations by estimating the objective and constraint functions during the optimization process through a reweighting approach.
Journal Article

Analyzing and Predicting Heterogeneous Customer Preferences in China's Auto Market Using Choice Modeling and Network Analysis

2015-04-14
2015-01-0468
As the world's largest auto producer and consumer, China is both the most promising and complex market given the country's rapid economic growth, huge population, and many regional and segment preference differences. This research is aimed at developing data-driven demand models for customer preference analysis and prediction under a competitive market environment. Regional analysis is first used to understand the impact of geographical factors on customer preference. After a comprehensive data exploration, a customer-level mixed logit model is built to shed light on fast-growing vehicle segments in the Chinese auto market. By combining the data of vehicle purchase, consideration, and past choice, cross-shopping behaviors and brand influence are explicitly modeled in addition to the impact of customer demographics, usage behaviors, and attributes of vehicles.
Technical Paper

Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process

2011-04-12
2011-01-0245
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Increasing computer models are developed to simulate vehicle crashworthiness, dynamic, and fuel efficiency. Before applying these models for product development, model validation needs to be conducted to assess the validity of the models. However, one of the key difficulties for model validation of dynamic systems is that most of the responses are functional responses, such as time history curves. This calls for the development of an objective metric which can evaluate the differences of both the time history and the key features, such as phase shift, magnitude, and slope between test and CAE curves. One of the promising metrics is Error Assessment of Response Time Histories (EARTH), which was recently developed. Three independent error measures that associated with physically meaningful characteristics (phase, magnitude, and slope) were proposed.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Technical Paper

A Model Validation Approach for Various Design Configurations with Insufficient Experimental Data for Model Accuracy Check

2012-04-16
2012-01-0228
Analytical models (math or computer simulation models) are typically built on the basis of many assumptions and simplifications and hence model prediction could be inaccurate in intended applications. Model validation is thus critical to quantify and improve the degree of accuracy of these models. So far, little work considers model validation for various design configurations so that model prediction is accurate in the intended design space. Furthermore, there is a lack of effective approaches that can be used to quantify model accuracy considering different number of experimental data. To overcome these limitations, objective of this paper is to develop a model validation approach for various design configurations with a reference metric for model accuracy check considering different number of experimental data.
Technical Paper

Comparative Benchmark Studies of Response Surface Model-Based Optimization and Direct Multidisciplinary Design Optimization

2014-04-01
2014-01-0400
Response Surface Model (RSM)-based optimization is widely used in engineering design. The major strength of RSM-based optimization is its short computational time. The expensive real simulation models are replaced with fast surrogate models. However, this method may have some difficulties to reach the full potential due to the errors between RSM and the real simulations. RSM's accuracy is limited by the insufficient number of Design of Experiments (DOE) points and the inherent randomness of DOE. With recent developments in advanced optimization algorithms and High Performance Computing (HPC) capability, Direct Multidisciplinary Design Optimization (DMDO) receives more attention as a promising future optimization strategy. Advanced optimization algorithm reduces the number of function evaluations, and HPC cut down the computational turnaround time of function evaluations through fully utilizing parallel computation.
Journal Article

Reliability-Based Design Optimization with Model Bias and Data Uncertainty

2013-04-08
2013-01-1384
Reliability-based design optimization (RBDO) has been widely used to obtain a reliable design via an existing CAE model considering the variations of input variables. However, most RBDO approaches do not consider the CAE model bias and uncertainty, which may largely affect the reliability assessment of the final design and result in risky design decisions. In this paper, the Gaussian Process Modeling (GPM) approach is applied to statistically correct the model discrepancy which is represented as a bias function, and to quantify model uncertainty based on collected data from either real tests or high-fidelity CAE simulations. After the corrected model is validated by extra sets of test data, it is integrated into the RBDO formulation to obtain a reliable solution that meets the overall reliability targets while considering both model and parameter uncertainties.
Journal Article

On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design

2013-04-08
2013-01-1386
Finite Element (FE) models are widely used in automotive for vehicle design. Even with increasing speed of computers, the simulation of high fidelity FE models is still too time-consuming to perform direct design optimization. As a result, response surface models (RSMs) are commonly used as surrogates of the FE models to reduce the turn-around time. However, RSM may introduce additional sources of uncertainty, such as model bias, and so on. The uncertainty and model bias will affect the trustworthiness of design decisions in design processes. This calls for the development of stochastic model interpolation and extrapolation methods that can address the discrepancy between the RSM and the FE results, and provide prediction intervals of model responses under uncertainty.
Journal Article

An Ensemble Approach for Model Bias Prediction

2013-04-08
2013-01-1387
Model validation is a process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. In reliability based design, the intended use of the model is to identify an optimal design with the minimum cost function while satisfying all reliability constraints. It is pivotal that computational models should be validated before conducting the reliability based design. This paper presents an ensemble approach for model bias prediction in order to correct predictions of computational models. The basic idea is to first characterize the model bias of computational models, then correct the model prediction by adding the characterized model bias. The ensemble approach is composed of two prediction mechanisms: 1) response surface of model bias, and 2) Copula modeling of a series of relationships between design variables and the model bias, between model prediction and the model bias.
X