Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 1: Modeling of a Spark Ignited Engine Combustion to Predict Engine Performance Considering Flame Propagation, Knock, and Combustion Chamber Wall ---

2014-04-01
2014-01-1073
The first objective of this work is to develop a numerical simulation model of the spark ignited (SI) engine combustion, taking into account knock avoidance and heat transfer between in-cylinder gas and combustion chamber wall. Secondly, the model was utilized to investigate the potential of reducing heat losses by applying a heat insulation coating to the combustion chamber wall, thereby improving engine thermal efficiency. A reduction in heat losses is related to important operating factors of improving SI engine thermal efficiency. However, reducing heat losses tends to accompany increased combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model was intended to make it possible to investigate the interaction of the heat losses and knock occurrence. The present paper consists of Part 1 and 2.
Journal Article

A Numerical Simulation Study on Improving the Thermal Efficiency of a Spark Ignited Engine --- Part 2: Predicting Instantaneous Combustion Chamber Wall Temperatures, Heat Losses and Knock ---

2014-04-01
2014-01-1066
The objective of this work is to develop a numerical simulation model of spark ignited (SI) engine combustion and thereby to investigate the possibility of reducing heat losses and improving thermal efficiency by applying a low thermal conductivity and specific heat material, so-called heat insulation coating, to the combustion chamber wall surface. A reduction in heat loss is very important for improving SI engine thermal efficiency. However, reducing heat losses tends to increase combustion chamber wall temperatures, resulting in the onset of knock in SI engines. Thus, the numerical model made it possible to investigate the interaction of the heat losses and knock occurrence and to optimize spark ignition timing to achieve higher efficiency. Part 2 of this work deals with the investigations on the effects of heat insulation coatings applied to the combustion chamber wall surfaces on heat losses, knock occurrence and thermal efficiency.
Journal Article

A Numerical Study on Detailed Soot Formation Processes in Diesel Combustion

2014-10-13
2014-01-2566
This study simulates soot formation processes in diesel combustion using a large eddy simulation (LES) model, based on a one-equation subgrid turbulent kinetic energy model. This approach was implemented in the KIVA4 code, and used to model diesel spray combustion within a constant volume chamber. The combustion model uses a direct integration approach with a fast explicit ordinary differential equation (ODE) solver, and is additionally parallelized using OpenMP. The soot mass production within each computation cell was determined using a phenomenological soot formation model developed by Waseda University. This model was combined with the LES code mentioned above, and included the following important steps: particle inception during which acenaphthylene (A2R5) grows irreversibly to form soot; surface growth with driven by reactions with C2H2; surface oxidation by OH radical and O2 attack; and particle coagulation.
Journal Article

A Study of Gasoline Lift-off Combustion in a Spark Ignition Engine

2008-04-14
2008-01-0140
The aim of this study is to demonstrate the concept of gasoline lift-off spray combustion in which the burning velocity is controlled by the rate of mixture supply to the flame zone. With this concept, gasoline fuel is injected under high pressure to promote atomization, evaporation and mixing with the air, thereby quickly forming a homogenous mixture extending to the flame downstream of the spray. As a result, the injected fuel is burned sequentially. In this study, a constant-volume combustion vessel was used to visualize and analyze spray combustion. The experimental results made clear the effects of the initial conditions (e.g., injection pressure and nozzle hole diameter) and the ambient conditions (e.g., temperature and pressure) on the flame lift-off length and soot formation. In addition, the conditions facilitating this combustion concept were examined by conducting combustion simulations with the KIVA-3V code, taking into account the detailed chemical reaction mechanisms.
Journal Article

Miller-PCCI Combustion in an HSDI Diesel Engine with VVT

2008-04-14
2008-01-0644
A variable valve timing (VVT) mechanism has been applied in a high-speed direct injection (HSDI) diesel engine. The effective compression ratio (εeff) was lowered by means of late intake valve closing (LIVC), while keeping the expansion ratio constant. Premixed charge compression ignition (PCCI) combustion, adopting the Miller-cycle, was experimentally realized and numerically analyzed. Significant improvements of NOx and soot emissions were achieved for a wide range of engine speeds and loads, frequently used in a transient mode test. The operating range of the Miller-PCCI combustion has been expanded up to an IMEP of 1.30 MPa.
Journal Article

Optimization of PM Measurements with a Number Counting Method

2008-10-06
2008-01-2436
Repeatabilities of PM measurements on a heavy-duty diesel engine equipped with a diesel particulate filter (DPF) using a filter weighing method and a number counting method with a full flow dilution system and a partial flow system were evaluated. The filter method with partial flow exhibited the best repeatability. However, a good correlation between the full flow and the partial flow number counting results suggests that the fluctuations observed using the number counting method were caused by changes in the engine exhaust. Applying a strict preconditioning procedure should improve the repeatability of the number counting method because this method is more sensitive than the filter weighing method. In addition, the effects of the specifications for the number counting method were evaluated. The results indicate that the hose length from the tip of the sampling probe to the inlet of the number counting system had a negligible effect.
Technical Paper

Evaluation of Regulated Materials and Ultra Fine Particle Emission from Trial Production of Heavy-Duty CNG Engine

2006-10-16
2006-01-3397
A prototype CNG engine for heavy-duty trucks has been developed. The engine had sufficient output in practical use, and the green-house gas emission rate was below that of the base diesel engine. Furthermore, the NOx emission rate was reduced to 0.16 g/kWh in the JE05 mode as results of having fully adjusted air fuel ratio control. The measured emission characteristics of particles from the prototype CNG engine demonstrated that oil consumption was related to the number of particles. Moreover, when oil consumption is at an appropriate level, the accumulation mode particles are significantly reduced, and the nuclei mode particles are fewer than those of diesel-fueled engines.
Journal Article

Experiments and Simulations of a Lean-Boost Spark Ignition Engine for Thermal Efficiency Improvement

2015-11-17
2015-32-0711
Primary work is to investigate premixed laminar flame propagation in a constant volume chamber of iso-octane/air combustion. Experimental and numerical results are investigated by comparing flame front displacements under lean to rich conditions. As the laminar flame depends on equivalence ratio, temperature, and pressure conditions, it is a main property for chemical reaction mechanism validation. Firstly, one-dimensional laminar flame burning velocities are predicted in order to validate a reduced chemical reaction mechanism. A set of laminar burning velocities with pressure, temperature, and mixture equivalence ratio dependences are combined into a 3D-CFD calculation to compare the predicted flame front displacements with that of experiments. It is found that the reaction mechanism is well validated under the coupled 1D-3D combustion calculations. Next, lean experiments are operated in a SI engine by boosting intake pressure to maintain high efficiency without output power penalty.
Journal Article

Detailed Diesel Combustion and Soot Formation Analysis with Improved Wall Model Using Large Eddy Simulation

2015-11-17
2015-32-0715
A mixed time-scale subgrid large eddy simulation was used to simulate mixture formation, combustion and soot formation under the influence of turbulence during diesel engine combustion. To account for the effects of engine wall heat transfer on combustion, the KIVA code's standard wall model was replaced to accommodate more realistic boundary conditions. This were carried out by implementing the non-isothermal wall model of Angelberger et al. with modifications and incorporating the log law from Pope's method to account for the wall surface roughness. Soot and NOx emissions predicted with the new model are compared to experimental data acquired under various EGR conditions.
Journal Article

A Numerical Study of the Effects of FAME Blends on Diesel Combustion and Emissions Characteristics Using a 3-D CFD Code Combined with Detailed Kinetics and Phenomenological Soot Formation Models

2013-10-14
2013-01-2689
The objective of the present research is to analyze the effects of using oxygenated fuels (FAMEs) on diesel engine combustion and emission (NOx and soot). We studied methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many types of biodiesels. Engine tests and numerical simulations were performed for 100% MO (MO100), 40% MO blended with JIS#2 diesel (MO40) and JIS#2 diesel (D100). The effects of MO on diesel combustion and emission characteristics were studied under engine operating conditions typically encountered in passenger car diesel engines, focusing on important parameters such as pilot injection, injection pressure and exhaust gas recirculation (EGR) rate. We used a diesel engine complying with the EURO4 emissions regulation, having a displacement of 2.2 L for passenger car applications. In engine tests comparing MO with diesel fuel, no effect on engine combustion pressure was observed for all conditions tested.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
Technical Paper

Effect of Exhaust Gas Recirculation on Exhaust Emissions from Diesel Engines Fuelled with Biodiesel

2007-09-16
2007-24-0128
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because bio-diesel is carbon neutral in principle. However, when biodiesel was applied to conventional diesel engines without modification for biodiesel, NOx emission was increased by the change in fuel characteristics. It is necessary to introduce some strategies into diesel engines fuelled with biodiesel for lower NOx emission than conventional diesel fuel case. The purpose of this study is to reveal that exhaust gas recirculation (EGR) is one of the solutions for the reduction of NOx emission and meeting the future emission regulations when using biodiesel. Neat Rapeseed oil methyl ester (RME) as a biodiesel (B100) was applied to diesel engines equipped with high pressure loop (HPL) EGR system and low pressure loop (LPL) EGR system. Cooled HPL EGR was increased during steady-state operations and JE05 transient mode tests.
Technical Paper

Optimization of Engine System for Application of Biodiesel Fuel

2007-07-23
2007-01-2028
Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because biodiesel is carbon neutral in principle. However, biodiesels yield an increase in NOx emission from conventional diesel engine, compared with diesel fuel case. Therefore, some strategies are needed for meeting the future emission regulations when using biodiesel. In this study, rapeseed oil methyl ester (RME) was applied to diesel engine equipped with exhaust gas recirculation (EGR) system and NOx storage reduction (NSR) catalyst. NOx reduction rate of NSR catalyst was drastically decreased by using RME, even if injection quantity of RME for rich spike was enhanced. However, an increase in EGR rate could reduce NOx emission without the deterioration in smoke and PM emissions.
Technical Paper

Study of Knock Control in Small Gasoline Engines by Multi-Dimensional Simulation

2006-11-13
2006-32-0034
To suppress knock in small gasoline engines, the coolant flow of a single-cylinder engine was improved by using two methods: a multi-dimensional knock prediction method combining a Flamelet model with a simple chemical kinetics model, and a method for predicting combustion chamber wall temperature based on a thermal fluid calculation that coupled the engine coolant and the engine structure (engine head, cylinder block, and head gasket). Through these calculations as well as the measurement of wall temperatures and the analysis of combustion by experiments, the effects of wall temperature distribution and consequent unburnt gas temperature distribution on knock onset timing and location were examined. Furthermore, a study was made to develop a method for cooling the head side, which was more effective to suppress knock: the head gasket shape was modified to change the coolant flow and thereby improve the distribution of wall temperatures on the head side.
Technical Paper

SOF Component of Lubricant Oil on Diesel PM in a High Boosted and Cooled EGR Engine

2007-04-16
2007-01-0123
The engine in the research is a single cylinder DI diesel using the emission reduction techniques such as high boost, high injection pressure and broad range and high quantity of exhaust gas recirculation (EGR). The study especially focuses on the reduction of particulate matter (PM) under the engine operating conditions. In the experiment the authors measured engine performance, exhaust gases and mass of PM by low sulfur fuel such as 3 ppm and low sulfur lubricant oil such as 0.26%. Then the PM components were divided into soluble organic fraction (SOF) and insoluble organic fraction (ISOF) and they were measured at each engine condition. The mass of SOF was measured from the fuel fraction and lubricant oil fraction by gas chromatography. Also each mass of soot fraction and sulfate fraction was measured as components of ISOF. The experiment was conducted at BMEP = 2.0 MPa as full load condition of the engine and changing EGR rate from 0% to 40 %.
Technical Paper

Formation Process of Soot Precursors in a Laminar Flow Reactor

2007-01-23
2007-01-0061
The Poly-Aromatic Hydrocarbon (PAH) formation process from benzene was studied using a laminar flow reactor and GC-MS. In addition to PAH, acetylene and ethylene were observed. Without oxygen at temperatures over 1070 K, the amount of PAH and C2 species increased as the benzene concentration decreased. Addition of oxygen caused a linear decrease in the benzene concentration, and almost all of the benzene was consumed under stoichiometric conditions at all temperatures. At 1053 K, the concentrations of PAH and C2 species were not affected by the addition of oxygen. On the other hand, when the temperature was greater than 1070 K, the amount of PAH formed increased as the equivalence ratio increased, until the equivalence ratio was about 4. Above this equivalence ratio, the amounts decreased. Amounts of phenanthrene and biphenyl were large compared to those of other PAHs, which indicated that the dominant PAH formation path is the formation of phenanthrene via biphenyl.
Technical Paper

Diesel Emissions Improvement by RME in a High Boost and EGR Single Cylinder Engine

2008-04-14
2008-01-1376
The biomass fuel is expected to solve the global warming due to a carbon neutral. A rapeseed oil methyl ester (RME) as biomass fuel was selected, and also a low sulfur diesel fuel is tested as reference fuel in this study. The experiments were carried out to improve diesel emissions and engine performance using high boost and high rate EGR system and a common rail injection system in a single cylinder engine. The diesel emissions and engine performance have been measured under the experimental conditions such as charging boost pressure from atmospheric pressure to 401.3kPa maximum and changing EGR rate from 0% to 40% maximum. RME contain about 10 mass % oxygen in the fuel molecule. Furthermore, RME does not contain aromatic hydrocarbons in the fuel. Due to these chemical properties, RME can be used at 40% high EGR condition.
Technical Paper

Real-Time and Direct Measurement of Pollutants in Exhaust Gas Utilizing Supersonic Jet / Resonance Enhanced Multi-Photon Ionization

2008-04-14
2008-01-0761
Supersonic jet / resonance enhanced multi-photon ionization (Jet-REMPI) technique was focused on the analyzing method for gas mixture like exhaust gas from automobiles. In this method, when the mass number and wavelength of excitation laser are determined adequately, the target compound can be monitored selectively. We developed a new analyzer utilizing REMPI method. Using this analyzer, real-time monitoring of exhaust gas from a motorcycle and diesel vehicles was conducted. As a result of real-time monitoring test of the vehicles, concentrations of aromatic compounds like benzene toluene etc. were quantified and real-time changes of their concentrations were observed.
Technical Paper

Effective NOx Reduction in High Boost, Wide Range and High EGR Rate in a Heavy Duty Diesel Engine

2009-04-20
2009-01-1438
The emission reduction from diesel engines is one of major issues in heavy duty diesel engines. Super Clean Diesel (SCD) Engine for heavy-duty trucks has also been researched and developed since 2002. The main specifications of the SCD Engine are six cylinders in-line and 10.5 l with a turbo-intercooled and cooled EGR system. The common rail system, of which the maximum injection pressure is 200 MPa, is adopted. The turbocharger is capable of increasing boost pressure up to 501.3 kPa. The EGR system consists of both a high-pressure loop (HP) EGR system and a low-pressure loop (LP) EGR system. The combination of these EGR systems reduces NOx and PM emissions effectively in both steady-state and transient conditions. The emissions of the SCD Engine reach NOx=0.2 g/kWh and PM=0.01 g/kWh with aftertreatment system. The adopted aftertreatment system includes a Lean NOx Trap (LNT) and Diesel Particulate Filter (DPF).
X