Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

Application of High-Speed PIV Diagnostics for Simultaneous Investigation of Flow Field and Spark Ignited Flame inside an Optical SI Engine

2017-03-28
2017-01-0656
High speed, time resolved Particle Image Velocimetry (PIV) diagnostics was applied to an optical SI engine to study the interactions between in-cylinder flow field and flame development. Optimisation and certain adaptations have been made to the diagnostic setup to enable time-resolved, simultaneous measurements of both PIV data and flame tomography imaging from the same original captured image set. In this particular study, interactions between flow and flame during lean-burn operating conditions at various tumble strength have been investigated and compared to a standard stoichiometric operation. Diagnostics were performed for both the vertical plane (x-y) and the horizontal plane (r-⊖) of the combustion chamber with a particular focus in the pent-roof area. Some major differences in the tumble flow-field prior to ignition has been observed between the lean and stoichiometric conditions.
Technical Paper

Flame Propagation Variation due to Insufficient HC Concentration

1998-10-19
982565
The purpose of this study was to examine the cause of fluctuations in combustion. It is important to understand the changes that occur in flame kernel development and in flame propagation during cyclic variation. In this study, a comparison was made between time-series variations in OH emission with THC concentration, and the intensity of the combustion reaction and the direction of flame propagation are also discussed. Early flame development and cyclic variation at an early stage of combustion were demonstrated by simultaneously measuring a two-dimensional image of flame emission and the time-series variation of local flame emission. The instantaneous intensity at Cassegrain measurement point agreed with the intensity of time-series variation in local flame propagation at CCD recorded timing. Variations in THC concentration in the cylinder were compared with time-series variations in local flame emission.
Technical Paper

Control of Microwave Plasma for Ignition Enhancement Using Microwave Discharge Igniter

2017-09-04
2017-24-0156
The Microwave Discharge Igniter (MDI) was developed to create microwave plasma for ignition improvement inside combustion engines. The MDI plasma discharge is generated using the principle of microwave resonance with microwave (MW) originating from a 2.45 GHz semiconductor oscillator; it is then further enhanced and sustained using MW from the same source. The flexibility in the control of semiconductors allows multiple variations of MW signal which in turn, affects the resonating plasma characteristics and subsequently the combustion performance. In this study, a wide range of different MW signal parameters that were used for the control of MDI were selected for a parametric study of the generated Microwave Plasma. Schlieren imaging of the MDI-ignited propane flame were carried out to assess the impact on combustion quality of different MW parameters combinations.
Technical Paper

Spray Formation of Air-Assist Injection for Two-Stroke Engine

1995-02-01
950271
This paper reports on an experimental study of dispersion process of an air-assisted injected spray with a view of optimizing its characteristics. A phase Doppler anemometer was used to measure the injected spray characteristics under open air condition. Ensembled average mean diameters and their velocities of fuel droplets were calculated for repetitive injections. The ensembled average mean velocity showed reasonable agreement with the velocity obtained by visualization. At higher load conditions, the atomization was achieved at high speed air flow such that the mean diameter was reduced. From medium to full load conditions, the fuel droplets were distributed in a tube-like profile due the shape of the nozzle. The first group of droplets had high velocity and small mean diameter in contrast to the second group. Relative slip velocity was not so small even in the fine droplets within the air flow from the injector as can expected.
Technical Paper

Flame Propagation Characteristics by Planar OH* Measurement

1999-09-28
1999-01-3326
The purpose of this study is to reveal the flame propagation characteristics. Planar OH* image and local radical emission were measured simultaneously. Planar OH* images were used to analyze the flame propagation characteristics by high-speed camera. These images were then used to evaluate the speed of distribution and the direction of flame propagation. By comparing local point radical emission and planar OH*, the flame propagation characteristics was measured and evaluate that. And the time history of the radical intensity and planar OH* distribution were compared. The relation ship between flame propagation speed and initial heat generation was discussed. The variation of flame propagation speed and the difference of propagation speed in both port sides were confirmed.
Technical Paper

Local A/F Measurement by Chemiluminescence OH*, CH* and C2* in SI Engine

2001-03-05
2001-01-0919
The chemiluminescence emission intensity can be measured with high temporal resolution, leading to understanding the chemical reaction. Time-series chemiluminescence measurements of OH*, CH* and C2* were carried out to understand flame propagation speed, its thickness and A/F ratio of combustion status. The optical piston head (quartz) allows us to visualize combustion chamber. It is found that the chemiluminescence intensity ratio of CH*/OH* and C2*/OH* can estimate local A/F. The A/F measured by O2 sensor was used for evaluation and the results indicate this method can be applicable to estimate A/F.
Technical Paper

Measurement of Flame Front Structure and Its Thickness by Planar and Local Chemiluminescence of OH*, CH* and C2*

2001-03-05
2001-01-0920
We have measured the local flame front structure and its thickness using high speed three CCD camera and Developed Cassegrain optics, which could measure local OH*, CH* and C2* radicals at a point. The time-series OH*, CH* and C2* planar images are compared to those measured by local radical. The results show that the CH* and C2* signals can be a nice marker of flame front structure and its thickness, while OH* has some uncertainty.
Technical Paper

In-spark-plug Sensor for Analyzing the Initial Flame and Its Structure in an SI Engine

2005-04-11
2005-01-0644
An in-spark-plug flame sensor was developed to measure local chemiluminescence near the spark gap in a practical spark-ignition (SI) engine in order to study the development of the initial flame kernel, flame front structure, transient phenomena, and the correlation between the initial flame kernel structure and cyclic variation in the flame front structure, which influences engine performance directly. The sensor consists of a commercial instrumented spark plug with small Cassegrain optics and an optical fiber. The small Cassegrain optics were developed to measure the local chemiluminescence intensity profile and temporal history of OH*, CH*, and C2* at the flame front formed in a turbulent premixed flame in an SI engine. A highresolution monochromator with an intensified chargecoupled device (ICCD) and spectroscopy using optical filters and photomultiplier tubes (PMTs) were used to measure the time-series of the three radicals, as well as the in-cylinder pressure.
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
X