Refine Your Search

Topic

Search Results

Technical Paper

Multi-domain Modeling and Simulation of AMT Based on Modelica

2011-04-12
2011-01-1237
The automatic mechanical transmission (AMT) was designed by automobile manufacturers to provide a better driving experience, especially in cities where congestion frequently causes stop-and-go traffic patterns. It uses electronic sensors, processors, hydraulic or pneumatic actuators execute clutch actuation and gear shifts on the command of the driver. Such systems coupled with various physical domains have great influence on the dynamic behavior of the vehicle, such as shift quality, driveability, acceleration, etc. This paper presents a detailed AMT model composed of various components from multi-domains like mechanical systems (clutch, gear pair, synchronizer, etc.), pneumatic actuator systems (clutch actuation system, gear select actuation system, gear shift actuation system, etc.). Various components and subsystem models, such as the vehicle, engine, AMT, wheels, etc., are integrated into an overall vehicle system model according to the transmission power flow and control logic.
Technical Paper

Modeling and Simulation of Hydraulic System with Fuzzy Uncertain Parameters

2010-04-12
2010-01-0913
Hydraulic systems are popular on vehicles, such as power steering, shock absorbers, brakes, etc. Many previously works have been done on the modeling and simulation of the hydraulic systems. However, these models and parameters are usually established on the basis of plans, drawings, measurements, observations, experiences, expert knowledge and standards, and so on. In general, certain information and precise values do not exist. Uncertainty may result, e.g., from human mistakes and errors in the manufacture, from the use and maintenance of constructions, from expert evaluations, and from a lack of information. Actually, many uncertain factors will lead to great errors, and may have great effect on the hydraulic system, so the research on the hydraulic system under uncertainties is very necessary. In this paper, fuzzy algorithm is introduced to analysis the response of the hydraulic system with uncertain parameters.
Technical Paper

Numerical Solution of Stochastic Differential Equations with Application to Vehicle Handling

2010-04-12
2010-01-0912
To solve the dynamic response problem that contains uncertain parameters needs, the stochastic differential equations needs to be calculated. Interval analysis has been widely used to solve engineering problems which contain many uncertain parameters usually. But the numerical solution method for stochastic differential equations based on the interval analysis method was seldom investigated. In this study a new numerical interval method for the stochastic differential equations based on the Euler's method is presented, which can be used to solve the linear system effectively and efficiently. The probabilistic and interval dynamics analysis of a two-degree-of-freedom bike car model with uncertain parameters are presented.
Technical Paper

Modeling and Optimization of Vehicle Acceleration and Fuel Economy Performance with Uncertainty Based on Modelica

2009-04-20
2009-01-0232
To design and optimize the vehicle driveline is necessary to decrease the fuel consumption and improve dynamic performance. This paper describes a methodology to optimize the driveline design including the axle ratio, transmission shift points and transmission shift ratios considering uncertainty. A new and flexible tool for modeling multi-domain systems, Modelica, is used to carry out the modeling and analysis of a vehicle, and the multi-domain model is developed to determine the optimum design in terms of fuel economy, with determinability. Secondly, a robust optimization is carried out to find the optimum design considering uncertainty. The results indicate that the fuel economy and dynamic performance are improved greatly.
Technical Paper

Multi-domain Modeling and Simulation of Hydraulic Power Steering System Based on Modelica

2010-04-12
2010-01-0271
Hydraulic power steering system, which can reduce the steering hand force by applying the output from a hydraulic actuator, has been widely used in vehicles. In this paper, a detailed steer model including steering column, steering trapezium, and detailed hydraulic power steering system which is consisting of steering cylinder, relief valve, rotary valve, pump and hydraulic lines were established, and a multi-body model of a heavy truck was established to connect with the hydraulic power steering system. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to in the modeling and simulation of the power steering system and the vehicle. The simulation was carried out to identify the effects of design variables on the lateral stability of the vehicle. The application of Modelica for investigating multi-domain problems is also demonstrated.
Technical Paper

Special Analytical Target Cascading for Handling Performance and Ride Quality Based on Conceptual Suspension Model and Multi-body Model

2009-04-20
2009-01-1455
A Special Analytical Target Cascading (SATC) process is developed for design problem which is difficult to ascertain the targets cascaded from upper level to lower level. The methodology is applied to achieve improving Handling Performance and Ride Quality (HPRQ) of a passenger car. A bi-level hierarchical structure with target-transforming process is established based on conceptual suspension model and multi-body models. DOE, RSM and a combined optimization method of simulated annealing and Programming Quadratic Line search is applied to execute the optimization process. The result shows that HPRQ is improved through special ATC based on CSM and multi-body modeling technique.
Technical Paper

Robust Design Optimization of an Shock Absorber for Enhancing Ride Performance

2013-04-08
2013-01-0995
There are many uncertain parameters in shock absorbers, which are induced by the manufacturing error, the wear of components and the aging of materials in real vehicle environment. These uncertainties often cause some deterioration of vehicle performance. To optimize the ride characteristic of a vehicle when the shock absorber includes uncertain parameters, the robust design method is used. In this paper, a Twin Tube shock absorber fluid system model has established on the multi-domain modeling environment. This model not only includes the commonly used parameters of the shock absorber but also takes into account the structure parameters of various valves in the shock absorber, which is more detailed and accurate than those models in the past literature. The robust design of the shock absorber parameters is successfully approached using the co-simulation technique, and the ride comfort performance of the vehicle is also improved.
Technical Paper

Robust Design of Load Sensing Proportional Valve by Orthogonal Experiment Analysis with Constrained Multi-objective Genetic Algorithm

2013-04-08
2013-01-0378
This paper deals with the robust design of the Load Sensing Proportional Valve (LSPV). To find out the parameters which have main effect on the performance of the LSPV, the DOE based on orthogonal experiment is carried out utilizing the LSPV model built in AMESim environment. In order to save computation expense, the RSM technique is used to approximate the optimal objectives and constraints. Then a robust design methodology using multi-objective evolutionary algorithm (MOEA) is performed and a set of non-dominated solutions are therefore obtained. With specified assessments, feasible solutions can therefore be selected from the entire field of the Pareto optimal solutions. The validation is made by Monte Carlo Simulation Technique in terms of the robustness of the feasible solutions.
Technical Paper

Robust Design for Vehicle Ride Comfort and Handling with Multi-Objective Evolutionary Algorithm

2013-04-08
2013-01-0415
As is known to all, there are some contradictions between the handling and ride performance during the design process of vehicles. Sometimes owing to serious collisions of each criterion in the high-dimensional solution space, the common method to deal with the contradiction is to transform into a single target according to weights of each objective, which may not obtain a desired result. A multi-criteria approach is therefore adopted to optimize both properties and the result of a multi-criteria design is not a unique one but a series of balanced solutions. This paper is focused on the robust design of a simplified vehicle model in terms of not only ride comfort but also handling and stability using a multi-objective evolutionary algorithm (MOEA) method. Using the proposed method, the conflicting performance requirements can be better traded off. One of the most important indexes to characterize the vertical ride comfort is the acceleration of the sprung mass.
Technical Paper

Optimization of Braking Force Distribution for Three-Axle Truck

2013-04-08
2013-01-0414
To provide a greater weight capacity, the tandem axle which is a group of two or more axles situated close together has been used on most heavy truck. In general, the reaction moments during braking cause a change in load distribution among both axles of the tandem suspension. Since load transfer among axles of a tandem suspension can lead to premature wheel lockup, tandem-axle geometry and the brake force distribution among individual axles of a tandem suspension have a pronounced effect on braking efficiency. The braking efficiency has directly influence on the vehicle brake distance and vehicle travelling direction stability in any road condition, so how to improve the braking efficiency is researched in this paper. The load transfer among individual axles is not only determined by vehicle deceleration but also by the actual brake force of each axle for tandem axle suspension, which increases the difficulty of braking efficiency improving.
Technical Paper

A Polynomial Chaos- Based Likelihood Approach for Parameter Estimation of Load Sensing Proportional Valve

2013-04-08
2013-01-0948
As there are a variety of uncertainty contained in dynamic systems, this paper presents a method to identify the uncertain parameters of Load Sensing Proportional Valve in a heavy truck brake system. This method is derived from polynomial chaos theory and uses the maximum likelihood approach to estimate the most likely value of uncertain parameters, such as equivalent bearing area diameter of the diaphragm, preload of return spring and so on. The maximum likelihood estimates are obtained through minimizing the cost function derived from the prior probability for the measurement noise. Direct stochastic collocation has been shown to be more efficient than Galerkin approach in the simulation of systems with large number of uncertain parameters. The simulation model of Load Sensing Proportional Valve is built in software AMESim based on logic structure of the valve. The uncertain parameters are estimated through the simulation results which are treated as measurements.
Technical Paper

Synthesis and Analysis of the Double-Axle Steering Mechanism Considering Dynamic Loads

2008-04-14
2008-01-1105
This paper investigates a hierarchical optimization procedure for the optimum synthesis of a double-axle steering mechanism by considering the dynamic load of a vehicle which is seldom discussed in the previous literature. Firstly, a multi-body model of double-axle steering is presented by characterizing the detailed leaf spring effect. Accordingly, the influences of dynamic load including the motion interference of steering linkage resulted from the elastic deformation of leaf spring, and the effects of wheel slip angle and the position discrepancy of wheel speed rotation centers are explored systematically. And then, a hierarchical optimization method based on target cascading methodology is proposed to classify the design variables of double-axle steering mechanism into four levels. At last, a double-axle steering mechanism of a heavy-duty truck is utilized to demonstrate the validity of this method.
Technical Paper

A Fuzzy Synthesis Control Strategy for Active Four-Wheel Steering Based on Multi-Body Models

2008-04-14
2008-01-0603
Active steering systems can help the driver to master critical driving situations. This paper presents a fuzzy logic control strategy on active steering vehicle based on a multi-body vehicle dynamic model. The multi-body vehicle dynamic model using ADAMS can accurately predict the dynamic performance of the vehicle. A new hybrid steering scheme including both active front steering (applying an additional front steering angle besides the driver input) and rear steering is presented to control both yaw velocity and sideslip angle. A set of fuzzy logic rules is designed for the active steering controller, and the fuzzy controller can adjust both sideslip angle and yaw velocity through the co-simulation between ADAMS and the Matlab fuzzy control unit with the optimized membership function. To ensure the design of high-quality fuzzy control rules, a rule optimization strategy is introduced.
Technical Paper

Vehicle Handling Dynamics with Uncertainty Using Chebyshev Interval Method

2014-04-01
2014-01-0720
Vehicle systems often operate with some degree of uncertainty. This study applies the Chebyshev interval method to model vehicle dynamic systems operating in the presence of interval parameters. A full vehicle model is used as the numerical model and the methodology is illustrated on the steering wheel angle pulse input test. In the numerical simulation, suspension stiffness coefficients and suspension damping coefficients are chosen as interval parameters and lateral acceleration and yaw rate are chosen to capture vehicle dynamic characteristics. System responses in time domain are validated against Monte Carlo simulations and against the scanning approach. Results indicate that the Chebyshev interval method is more efficient than Monte Carlo simulations. The results of scanning method are similar to the ones obtained with the Chebyshev interval method.
Technical Paper

Multi-domain Modeling and Simulation of Vehicle Thermal System Based on Modelica

2014-04-01
2014-01-1183
Vehicle Thermal Management System (VTMS) is a cross-cutting technology that directly or indirectly affects engine performance, fuel economy, safety and reliability, driver/passenger comfort, emissions. This paper presents a novel methodology to investigate VTMS based on Modelica language. A detailed VTMS platform including engine cooling system, lubrication system, powertrain system, intake and exhaust system, HVAC system is built, which can predict the steady and transient operating conditions. Comparisons made between the measured and calculated results show good correlation and approve the forecast capability for VTMS. Through the platform a sensitivity analysis is presented for basic design variables and provides the foundation for the design and matching of VTMS. Modelica simulation language, which can be efficiently used to investigate multi-domain problems, was used to model and simulate VTMS.
Technical Paper

Sensitivity Analysis on a Synchronization Mechanism for Manual Transmission Gearbox

2014-04-01
2014-01-1768
This paper presents the dynamic and analysis models of a typical synchronizer, which are mainly used to analyze the sensitivity of parameters of synchronizer on the gear shift performance. Because there are so many parameters namely coefficient of friction, cone angle, mean radius, blocker angle, etc, affected the synchronizer performance, which the times of experience will increase in a geometrical ratio if tested them one by one, it is almost impossible to evaluate all parameters by experience alone. Due to virtual prototype technology, the synchronizer parameterized virtual models can be built for the synchronizer studies. The parameterized virtual models of the typical synchronizers are developed with ADAMS. Then the gear shift process is simulated and analyzed for the given input parameters respectively. The models also predict the shift time and the peak of the shift force, and the model is validated by the good correlation between simulation results and test data.
Technical Paper

Recursive Estimation of Vehicle Inertial Parameters Using Polynomial Chaos Theory via Vehicle Handling Model

2015-04-14
2015-01-0433
A new recursive method is presented for real-time estimating the inertia parameters of a vehicle using the well-known Two-Degree-of- Freedom (2DOF) bicycle car model. The parameter estimation is built on the framework of polynomial chaos theory and maximum likelihood estimation. Then the most likely value of both the mass and yaw mass moment of inertia can be obtained based on the numerical simulations of yaw velocity by Newton method. To improve the estimation accuracy, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process. The results of the simulation study suggest that the proposed method can provide quick convergence speed and accurate outputs together with less sensitivity to tuning the initial values of the unidentified parameters.
Technical Paper

Frequency-Dependent Hydraulic Engine Mount with Five-Parameters Fractional Derivative Model in Vehicle model

2015-04-14
2015-01-1670
Hydraulic Engine Mount (HEM) is widely used in vehicle Powertrain Mounting System (PMS) for vibration isolation. The dynamic performances of an HEM are strongly frequency dependent. A Five-Parameters Fractional Derivative model is used to describe the dynamic properties of an HEM. A 1/4 car model is applied to evaluate the effect of frequency-dependent dynamic stiffness which using measured data of a typical hydraulic engine mount. The excitations from engine and road are considered in the simulation. The generalized- α method is presented to solve the vehicle model with five-parameter fractional derivative model.
Technical Paper

Multi-objective Optimization of the PMS Based on Non-dominated Sorting Genetic Algorithm II

2015-04-14
2015-01-1675
In order to reasonably match the variable stiffness and location of the Powertrain Mounting System (PMS) and optimize the ride comfort of commercial vehicle, a thirteen degrees of freedom (DOF) model of a commercial vehicle was established in Adams/view. Specially, the support rod installed on the upside of the transmission case was modeled as a flexible body. The vibration isolation provided by the PMS was evaluated in three aspects: the energy decoupling of the powertrain, the response force of the mount and the displacement of the powertrain. The energy decoupling ratio, the force RMS of the mount when force excitation was applied on the powertrain and the displacement of the powertrain Center of Gravity (C.G) when displacement excitation was applied on the vehicle chassis were selected as the optimal target. Adams and MATLAB were integrated into the optimization software iSIGHT to optimize the PMS. NSGA-II is used to obtain some Pareto-optimal solutions of PMS.
Technical Paper

Powertrain Motion Control Analysis under Quasi-Static Extreme Loads

2016-04-05
2016-01-0439
The powertrain mounting system (PMS) plays an important role in improving the NVH (Noise, Vibration, Harshness) quality of the vehicle. In all running conditions of a vehicle, the displacements of the powertrain C.G. should be controlled in a prescribed range to avoid interference with other components in the vehicle. The conventional model of PMS is based on vibration theory, considering the rotation angles are small, ignoring the sequence of the rotations. However, the motion of PMS is in 3D space with 3 translational degrees of freedom and 3 rotational degrees of freedom, when the rotation angles are not small, the conventional model of PMS will cause errors. The errors are likely to make powertrain interfering with other components. This paper proposes a rigid body mechanics model of the powertrain mounting system. When the powertrain undergoes a large rotational motion, the rigid body mechanics model can provide more accurate calculation results.
X