Refine Your Search

Search Results

Technical Paper

Multi Objective Optimization of Vehicle Crashworthiness Based on Combined Surrogate Models

2017-03-28
2017-01-1473
Several surrogate models such as response surface model and radial basis function and Kriging models are developed to speed the optimization design of vehicle body and improve the vehicle crashworthiness. The error analysis is used to investigate the accuracy of different surrogate models. Furthermore, the Kriging model is used to fit the model of B-pillar acceleration and foot well intrusion. The response surface model is used to fit the model of the entire vehicle mass. These models are further used to calculate the acceleration response in B-pillar, foot well intrusion and vehicle mass instead of the finite element model in the optimization design of vehicle crashworthiness. A multi-objective optimization problem is formulated in order to improve vehicle safety performance and keep its light weight. The particle swarm method is used to solve the proposed multi-objective optimization problem.
Technical Paper

A Similarity Evaluation Metric for Mesh Based CAE Model Simplification and Its Application on Vehicle

2017-03-28
2017-01-1332
To obtain higher efficiency in analysis process, simplification methods for computer-aided engineering (CAE) models are required in engineering. Current model simplification methods can meet certain precision and efficiency requirement, but these methods mainly concentrate on model features while ignoring model mesh which is also critical to efficiency of the analysis process and preciseness of the results. To address such issues, an integrated mesh simplification and evaluation process is proposed in this paper. The mesh is simplified to fewer features (e.g. faces, edges, and vertices) through edge collapsing based on quadric error metric. Then curvatures and normal vectors which are the objects to be evaluated are extracted from the original and simplified models for comparison. To obtain accurate results, the geometric information of mesh nodes and elements are both considered in this evaluation process. The proposed method is implemented on a vehicle crash test.
Technical Paper

An Improved K-Means Based Design Domain Recognition Method for Automotive Structural Optimization

2018-04-03
2018-01-1032
Design optimization methods are widely used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges is to search for the optimal design in an efficient manner. For complex design and optimization problems such as automotive applications, optimization algorithms work better if the initial searching points are within or close to feasible domains. In this paper, the k-means clustering algorithm is exploited to identify sets of reduced feasible domains from the original design space. Within the reduced feasible domains, the optimal design can be obtained efficiently. A mathematical example and a vehicle body structure design problem are used to demonstrate the effectiveness of the proposed method.
Technical Paper

Automotive Crashworthiness Design Optimization Based on Efficient Global Optimization Method

2018-04-03
2018-01-1029
Finite element (FE) models are commonly used for automotive crashworthiness design. However, even with increasing speed of computers, the FE-based simulation is still too time-consuming when simulating the complex dynamic process such as vehicle crashworthiness. To improve the computational efficiency, the response surface model, as the surrogate of FE model, has been widely used for crashworthiness optimization design. Before introducing the surrogate model into the design optimization, the surrogate should satisfy the accuracy requirements. However, the bias of surrogate model is introduced inevitably. Meanwhile, it is also very difficult to decide how many samples are needed when building the high fidelity surrogate model for the system with strong nonlinearity. In order to solve the aforementioned problems, the application of a kind of surrogate optimization method called Efficient Global Optimization (EGO) is proposed to conduct the crashworthiness design optimization.
Technical Paper

Investigation of the Samples Size Effects on Hybrid Surrogate Model Component Surrogates for Crashworthiness Design

2018-04-03
2018-01-1028
Surrogate model based design optimization has been widely adopted in automotive industry. Hybrid surrogate model with multiple component surrogates is considered to be a better choice when simulating highly non-linear responses in vehicle crashworthiness analysis. Currently, the number of component surrogates has to be decided before-hand when constructing of a hybrid surrogate model. This paper conducts a comparative study on the performances of three popular hybrid modeling methods including heuristic computation strategy, and two kinds of optimal weighted surrogates. The effects of samples size on the number of individual surrogates that should be included into the final hybrid surrogate models for crashworthiness responses are investigated. Different hybrid modeling techniques and multiple validation criteria are evaluated. Some observations and conclusions on the selection of component surrogates in hybrid surrogate modeling are given in the end.
Technical Paper

A Maximum Incompatibility Constrained Collaborative Optimization Method for Vehicle Weight Reduction

2018-04-03
2018-01-0585
Collaborative optimization is an important design tool in complex vehicle system engineering. However, there are many problems yet to be resolved when applying the conventional collaborative optimization method in vehicle body weight reduction, such as convergence difficulties and low optimization efficiency. To solve these problems, a maximum incompatibility constrained collaborative optimization method is proposed in the paper. First, the 1-norm equality constraints expression of the system level is used to replace the traditional 2-norm inequality constraints. Then, a maximum incompatibility is selected from modified inequality constraints to improve optimization efficiency. Finally, an overall compatibility constraint is introduced to decrease the influence caused by the initial point. A mathematical example is used to verify the effectiveness and stability of the proposed method.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

Research on the FE Modeling and Impact Injury of Obese 10-YO Children Based on Mesh Morphing Methodology

2018-04-03
2018-01-0540
In order to improve the comprehensive protection for children with variable shapes and sizes, this paper conducted studies on the impact injury for obese children based on a 10-YO finite element model. Some specific geometrics on the body surface were firstly acquired by the combination of pediatric anthropometric database and generator of body (GEBOD). A Radial Basis Function (RBF) based mesh morphing technique was then used to modify the original standard size FE model using the obtained geometrics. The morphed FE model was validated based on the experimental data of frontal sled test and chest-abdomen impact test. The effects of obesity on injury performances were analyzed through simplified high-speed and low-speed crash simulations.
Technical Paper

A Study of Model Validation Method for Dynamic Systems

2010-04-12
2010-01-0419
This paper presents an enhanced Bayesian based model validation method together with probabilistic principal component analysis (PPCA). The PPCA is employed to address multivariate correlation and to reduce the dimensionality of the multivariate functional responses. The Bayesian hypothesis testing is used to quantitatively assess the quality of a multivariate dynamic system. Unlike the previous approach, the differences between test and CAE results are used for dimension reduction though PPCA and then to assess the model validity. In addition, physics-based thresholds are defined and transformed to the PPCA space for Bayesian hypothesis testing. This new approach resolves some critical drawbacks of the previous method and provides desirable properties of a validation method, e.g., symmetry. A dynamic system with multiple functional responses is used to demonstrate this new approach.
Technical Paper

Enhanced Error Assessment of Response Time Histories (EEARTH) Metric and Calibration Process

2011-04-12
2011-01-0245
Computer Aided Engineering (CAE) has become a vital tool for product development in automotive industry. Increasing computer models are developed to simulate vehicle crashworthiness, dynamic, and fuel efficiency. Before applying these models for product development, model validation needs to be conducted to assess the validity of the models. However, one of the key difficulties for model validation of dynamic systems is that most of the responses are functional responses, such as time history curves. This calls for the development of an objective metric which can evaluate the differences of both the time history and the key features, such as phase shift, magnitude, and slope between test and CAE curves. One of the promising metrics is Error Assessment of Response Time Histories (EARTH), which was recently developed. Three independent error measures that associated with physically meaningful characteristics (phase, magnitude, and slope) were proposed.
Technical Paper

A Research on the Body-in-White (BIW) Weight Reduction at the Conceptual Design Phase

2014-04-01
2014-01-0743
Vehicle weight reduction has become one of the essential research areas in the automotive industry. It is important to perform design optimization of Body-in-White (BIW) at the concept design phase so that to reduce the development cost and shorten the time-to-market in later stages. Finite Element (FE) models are commonly used for vehicle design. However, even with increasing speed of computers, the simulation of FE models is still too time-consuming due to the increased complexity of models. This calls for the development of a systematic and efficient approach that can effectively perform vehicle weight reduction, while satisfying the stringent safety regulations and constraints of development time and cost. In this paper, an efficient BIW weight reduction approach is proposed with consideration of complex safety and stiffness performances. A parametric BIW FE model is first constructed, followed by the building of surrogate models for the responses of interest.
Technical Paper

Data Mining Based Feasible Domain Recognition for Automotive Structural Optimization

2016-04-05
2016-01-0268
Computer modeling and simulation have significantly facilitated the efficiency of product design and development in modern engineering, especially in the automotive industry. For the design and optimization of car models, optimization algorithms usually work better if the initial searching points are within or close to a feasible domain. Therefore, finding a feasible design domain in advance is beneficial. A data mining technique, Iterative Dichotomizer 3 (ID3), is exploited in this paper to identify sets of reduced feasible design domains from the original design space. Within the reduced feasible domains, optimal designs can be efficiently obtained while releasing computational burden in iterations. A mathematical example is used to illustrate the proposed method. Then an industrial application about automotive structural optimization is employed to demonstrate the proposed methodology. The results show the proposed method’s potential in practical engineering.
Technical Paper

Quantification of Meta-model and Parameter Uncertainties in Robust Design

2016-04-05
2016-01-0279
To reduce the computational time of the iterations in robust design, meta-models are frequently utilized to approximate time-consuming computer aided engineering models. However, the bias of meta-model uncertainty largely affects the robustness of the prediction results, this uncertainty need to be addressed before design optimization. In this paper, an efficient uncertainty quantification method considering both model and parameter uncertainties is proposed. Firstly, the uncertainty of parameters are characterized by statistical distributions. The Bayesian inference is then performed to improve the predictive capabilities of the surrogate models, meanwhile, the model uncertainty can also be quantified in the form of variance. Monte Carlo sampling is finally utilized to quantify the compound uncertainties of model and parameter. Furthermore, the proposed uncertainty quantification method is used for robust design.
Technical Paper

The Design Optimization of Vehicle Interior Noise through Structural Modification and Constrained Layer Damping Treatment

2015-04-14
2015-01-0663
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is developed by using finite element method. The frequency response of structural-acoustic system is computed by modal analysis method. The optimization problem is constructed to minimize the sound pressure level in the right ear of the driver. The sensitivity analysis is carried out to find the key panels to be optimized as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to develop the surrogate model and optimize the vehicle Noise Vehicle and Harshness (NVH) behavior. A 9dB reduction of sound pressure level (SPL) in the right era of the driver is obtained through geometric optimization for panels. Furthermore, the topology optimization model is developed to search the optimal layout of constrained layer damping treatments in the front floor.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Technical Paper

An Integrated Deformed Surfaces Comparison Based Validation Framework for Simplified Vehicular CAE Models

2018-04-03
2018-01-1380
Significant progress in modeling techniques has greatly enhanced the application of computer simulations in vehicle safety. However, the fine-meshed impact models are usually complex and take lots of computational resources and time to conduct design optimization. Hence, to develop effective methods to simplify the impact models without losing necessary accuracy is of significant meaning in vehicle crashworthiness analysis. Surface deformation is frequently regarded as a critical factor to be measured for validating the accuracy of CAE models. This paper proposes an integrated validation framework to evaluate the inconsistencies between the deformed surfaces of the original model and simplified model. The geometric features and curvature information of the deformed surfaces are firstly obtained from crash simulation. Then, the magnitude and shape discrepancy information are integrated into the validation framework as the surface comparison objects.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Journal Article

An Integrated Validation Method for Nonlinear Multiple Curve Comparisons

2016-04-05
2016-01-0288
In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
Journal Article

An Enhanced Input Uncertainty Representation Method for Response Surface Models in Automotive Weight Reduction Applications

2015-04-14
2015-01-0423
Vehicle weight reduction has become one of the viable solutions to ever-growing energy and environmental crisis. In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affects the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. For the purpose of constructing and correcting the bias in RSMs, scheduling Design of Experiments (DOEs) must be conducted properly. This paper develops a method to arrange DOEs in order to build RSMs with high quality, considering the influence of input uncertainty.
Journal Article

Research on Validation Metrics for Multiple Dynamic Response Comparison under Uncertainty

2015-04-14
2015-01-0443
Computer programs and models are playing an increasing role in simulating vehicle crashworthiness, dynamic, and fuel efficiency. To maximize the effectiveness of these models, the validity and predictive capabilities of these models need to be assessed quantitatively. For a successful implementation of Computer Aided Engineering (CAE) models as an integrated part of the current vehicle development process, it is necessary to develop objective validation metric that has the desirable metric properties to quantify the discrepancy between multiple tests and simulation results. However, most of the outputs of dynamic systems are multiple functional responses, such as time history series. This calls for the development of an objective metric that can evaluate the differences of the multiple time histories as well as the key features under uncertainty.
X