Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Nonlinear Dynamic Control Design with Conditional Integrators Applied to Unmanned Skid-steering Vehicle

2017-03-28
2017-01-1585
A dynamic controller is designed for unmanned skid-steering vehicle. The vehicle speed is controlled through driving torque of engine to achieve the desired vehicle speed and the steering is controlled through hydraulic braking on each side of the vehicle to achieve the desired yaw rate. Contrary to the common approaches by considering non-holonomic constraints, tire slip and saturation of actuators torque influencing the driving and braking are considered, based on the analysis of vehicle dynamic model and nonlinear tire model. Hence, with conditional integrators, the dynamic controller overcoming integral saturation is designed to ensure the accurate tracking for desired signals under influence of tire forces and constraint of actuators. In addition, the exponential kind filter is utilized to enhance the ability of smoothing noise of wheel speed. To perform small radius cornering maneuvers, a dynamic control strategy for steering when vehicle speed is zero is also designed.
Technical Paper

Vehicle Sideslip Angle Estimation: A Review

2018-04-03
2018-01-0569
Vehicle sideslip angle estimation is of great importance to the vehicle stability control as it could not be measured directly by ordinary vehicle-mounted sensors. As a result, researchers worldwide have carried out comprehensive research in estimating the vehicle sideslip angle. First, as the attitude would affect the acceleration information measured by the IMU directly, different kinds of vehicle attitude estimation methods with multi-sensor fusion are presented. Then, the estimation algorithms of the vehicle sideslip angle are classified into the following three aspects: kinematic model based method, dynamic model based method, and fusion method. The characteristics of different estimation algorithms are also discussed. Finally, the conclusion and development trend of the sideslip angle estimation are prospected.
Technical Paper

Research of Motor Control Based on Integrated-Electro-Hydraulic Braking System

2016-09-14
2016-01-1886
With development of vehicle advanced driver assistant system and intelligent techniques, safer and more intelligent Integrated-Electro-Hydraulic Braking System is required to realize brake-by-wire. Thus, more and more companies and universities developed Integrated-Electro-Hydraulic Braking System to fulfill these requirements. In this paper, an Integrated-Electro-Hydraulic Braking System is introduced, which consists of active source power, pedal feel emulator and electro control unit. As a composite system of mechanic, electron and hydraulic pressure, the Integrated-Electro-Hydraulic Braking System has complex system characteristics. Integrated-Electro-Hydraulic Braking System and active power source have very different dynamic characteristics. So algorithms of hydraulic pressure control and motor control should be apart, but algorithm of them should be united in hardware to meet integration demand.
Technical Paper

Theoretical Modeling and FEM Analysis of the Thermo-mechanical Dynamics of Ventilated Disc Brakes

2010-04-12
2010-01-0075
Prediction and analysis of the thermo-mechanical coupling behavior in friction braking system is very important for the design and application of vehicle brakes, such as brake judder, brake squeal, brake wear, brake cracks, brake fade. This paper aims to establish a macro-structural model of the thermo-mechanical dynamics of the ventilated disc brake with asymmetrical outer and inner disc thickness, taking into account the friction-velocity curve of the disc pad couple acquired by testing. On the basis of finite elements analysis of the model, the predictions of the thermo-mechanical responses of the brake disc are presented, including disc transient temperature field and normal stress in radial, circular and axial directions, disc lateral deformation and disc thickness variation. Numerical predictions of the disc surface temperature and later distortion are compared with experimental measurements obtained by thermocouples and non-contact displacement sensors.
Technical Paper

Model Based Yaw Rate Estimation of Electric Vehicle with 4 in-Wheel Motors

2009-04-20
2009-01-0463
This paper describes a methodology to estimate yaw rate of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle yaw rate precisely, especially when some of the four wheels have large slip ratio. Therefore, a model based estimation methodology is put forward, which uses four wheel speeds, steering wheel angle and vehicle lateral acceleration as input signals. Firstly the yaw rate is estimated through three different ways considering both vehicle kinematics and vehicle dynamics. Vehicle kinematics based method has good estimation accuracy even when the vehicle has large lateral acceleration. However, it can not provide satisfying results when the wheel has large slip ratio. In contrast, vehicle dynamics based method is not so sensitive to wheel slip ratio.
Technical Paper

An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control

2013-04-08
2013-01-0717
Based on the four-wheel-drive electric vehicle (4WD EV), a variable structure control (VSC) strategy is designed in this paper for the anti-lock braking control. With nonpeak friction coefficient as target, sign judgment method of switch function in this VSC strategy is improved and a new control algorithm is proposed. The improved VSC strategy is made robust to the parameters of the algorithm and verified by the computer simulation as well as the hard-in-loop test. The results show that the slip rate can be controlled to a point in the stable area near the optimal slip ratio and the control strategy can effectively realize the anti-lock braking control.
Technical Paper

Longitudinal Velocity Estimation of Electric Vehicle with 4 In-wheel Motors

2008-04-14
2008-01-0605
This paper describes a methodology to estimate longitudinal velocity of a 4-wheel-drive electric vehicle, in which wheel driven torque can be independently controlled by electric motor. Without non-driven wheels it would be difficult to estimate the vehicle longitudinal velocity precisely, especially when all of four wheels have large slip ratio. Therefore, an estimation methodology based on fuzzy logic is put forward, which uses four wheel speed and longitudinal acceleration as input signals. However, this method works not very well when two or more wheels have large slip ratio. In order to improve estimation effect, a state variable filter is designed to calculate wheel acceleration signals, which are used as additional signals to the fuzzy logic observer. Furthermore, the possibility of using four wheel driving torque signals to improve the estimation precision is also discussed.
Technical Paper

Research of Active Power Source Based on Electronic Hydraulic Braking System

2015-04-14
2015-01-1211
To research the dynamic response of active power source of electronic hydraulic brake system, the paper proposes a restricted distribution control strategy. Building control strategy model and active power source model to simulation with Matlab/Simulink and AMEsim, and bench test is conducted on different driving cycles, which proves that the dynamic response of active power source is fit and controllable by adjusting PID parameters.
Technical Paper

Influences of Pad Backplate on Thermo-Mechnical Coupling in Disc Brake

2016-04-05
2016-01-1354
The transient thermo-mechanical coupling dynamic model of ventilated disc brake with asymmetrical outer and inner thickness was established by means of Msc-marc software. In the model, pad backplate is simplified as a rigid surface with the same shape of brake lining and is bonded together with brake lining. Control node is associated with the rigid surface and the equivalent force that replaces the pressure is applied on the control nodes, of which the degrees of freedom in radial and rotational directions are constrained. With distribution characteristics of disc temperature field, normal stress field and lateral thermo-elastic deformation and thickness for the evaluation, the impacts of brake pad constraints on brake thermomechanical coupling characteristics were analyzed. The simulation results show that the brake pad back plate is an important structure in brake thermo-mechanical coupling analysis, which can’t be ignored in simulation computing.
Technical Paper

Path Following Control for Skid Steering Vehicles with Vehicle Speed Adaption

2014-04-01
2014-01-0277
In this paper we present a path following control design for a six-wheel skid-steering vehicle. Contrary to the common approaches that impose non-holonomic constraints, a dynamic vehicle model is established based on a pseudo-static tire model, which uses tire slip to determine tire forces. Our control system admits a modular structure, where a motion controller computes the reference vehicle yaw rate and reference vehicle speed and a dynamics controller tracks these signals. A robust nonlinear control law is designed to track the reference wheel speeds determined by the dynamics controller with proved stability properties. Saturated control techniques are employed in designing the reference yaw rate, which ensures the magnitude of the reference yaw rate does not violate the constraint from the ground-tire adhesion. The simulation results demonstrate the effectiveness of the proposed path following control design.
Technical Paper

Control of Novel Integrated-Electro-Hydraulic Brake System for Automotive

2015-09-27
2015-01-2699
With the electrification and intelligentialization of vehicle, requirements on more intelligent and integrated brake system are put forward. A novel integrated-electro-hydraulic brake system (I-EHB) for automotive is presented to fulfill these requirements. I-EHB is consisted of active power source (APS), pedal feel emulator (PFE), electro control unit (ECU) and hydraulic control unit (HCU). The system characteristics of I-EHB are tested through test rig. According to characteristics experiments, friction and non-linear phenomena in hydraulic pressure control are found. In order to overcome these phenomena in control of I-EHB, chatter-compensation is adopted based on experiment analysis. Algorithm are tested and optimized through test rig. As a result, through chatter-compensation the hydraulic pressure is controlled accurately and chatter-compensation is optimized for different working conditions.
Technical Paper

Adaptive Cascade Optimum Braking Control Based on a Novel Mechatronic Booster

2017-09-17
2017-01-2514
BBW (Brake-by-wire) can increase the electric and hybrid vehicles performance and safety. This paper proposes a novel mechatronic booster system, which includes APS (active power source), PFE (pedal feel emulator), ECU (electronic control unit). The system is easily disturbed when the system parameters and the outside conditions change. The system performance is weakened. The cascade control technique can be used to solve the problem. This paper develops an adaptive cascade optimum control (ACOC) algorithm based on the novel mechatronic booster system. The system is divided into main loop and servo loop, both of them are closed-loop system. The servo-loop system can eliminate the disturbance which exists in the servo loop. So the robustness of the cascade control system is improved than which of the general closed-loop control system. Different control object is respectively chosen. The control-oriented mathematical model is designed.
Technical Paper

Influences of Initial DTV on Thermomechnical Coupling in Disc Brake System

2017-09-17
2017-01-2492
In this paper, the initial disc thickness variation (DTV) of a ventilated disc in automotive brake system is modeled as sinusoidal function of the second order. The transient thermomechanical coupling properties of the brake system is simulated using finite element (FE) modeling. The system models and results were verified by a thermomechanical coupling test of a disc brake conducted on a brake dynamometer. By using varied evaluation indexes such as the temperature distribution, the normal stress and the elastic deformation of disc surfaces, the influences of the initial DTV and its direction as well as its amplitude on the thermomechanical coupling characteristics were analyzed.
Technical Paper

The Evaluation of ABS Performance

2003-03-03
2003-01-0255
On the basis of existing methods, a new method of evaluating ABS performance is proposed in the paper. This method can evaluate lateral stability of vehicle during vehicle braking process. It is verified by simulation. The most advantage of this method is that it can evaluate the performance of ABS during design phase. It also can short the developing cycle of ABS, and save the developing expenditure of ABS. This method can be applied to the design and simulation study of ABS.
Journal Article

Differential Drive Assisted Steering Control for an In-wheel Motor Electric Vehicle

2015-04-14
2015-01-1599
For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
Journal Article

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback

2014-04-01
2014-01-0155
Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control.
Journal Article

The Influences of the Subframe Flexibility on Handling and Stability Simulation When Using ADAMS/Car

2016-04-05
2016-01-1637
To analyze the K&C (kinematics and compliance), handling and stability performance of the vehicle chassis, some simulations are usually performed using a multi-body dynamics software named ADAMS. This software introduces assumptions that simplify the components of the suspension as rigid bodies. However, these assumptions weaken the accuracy of the simulation of ADAMS. Therefore the use of flexible bodies in K&C and handling and stability simulation in ADAMS is needed to conduct more precise suspension system designs. This paper mainly analyses the influences of the subframe flexibility on handling and stability simulation in ADAMS/Car. Two complete vehicle models are built using ADAMS/Car and Hypermesh. The only difference between the two models is the subframe of the front McPherson suspension. One of the subframes is simplified as a rigid body. The other one is a flexible body built using the MNF file from Hypermesh.
Technical Paper

Pressure Estimation Algorithms in Decoupled Electro-Hydraulic Brake System Considering the Friction and Pressure-Position Relationship

2019-04-02
2019-01-0438
This paper presents several pressure estimation algorithms (PEAs) for a decoupled electro-hydraulic brake system (EHB), which is driven by an electric motor + reduction gear. Most of the pressure control solutions are based on standard pressure-based feedback control, requiring a pressure signal. Although the pressure sensor can produce the pressure feedback signal, it will increase cost and enlarge installation space. The rotation angle of electric motor is available by the built-in sensor, so the pressure can be estimated by using the rotation angle. Considering the typical nonlinearities (i.e. friction, pressure-position relationship) and uncertainties (i.e. disturbance caused by friction model), the estimation-oriented model is established. The LuGre model is selected to describe the friction, and the pressure-position relationship is fitted by a quadratic polynomial.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
X