Refine Your Search

Topic

Search Results

Journal Article

Exploring the Potential of Combustion on Titan

2018-04-07
Abstract Significant attention has been focused on Mars due to its relative proximity and possibility of sustaining human life. However, its lack of in-situ sources of energy presents a challenge to generate needed energy on the surface. Comparatively, Titan has a nearly endless source of fuel in its atmosphere and lakes, but both are lacking in regards to their oxidizing capacity. The finding of a possible underground liquid ammonia-water lake on Titan suggests that oxygen might actually be within reach. This effort provides the first theoretical study involving a primary energy generation system on Titan using the atmosphere as a fuel and underground water as the source for the oxygen via electrolysis from wind generated electricity.
Journal Article

Improve Heat Resistance of Composite Engine Cowlings Using Ceramic Coating Materials, Experimental Design and Testing

2018-06-04
Abstract A large amount of heat generated in the engineering compartment in a hovering helicopter may lead to premature degradation of inner skin of its engine cowling and cause serious failure on the engine cowling. This study proposes a solution of improving heat resistance of the helicopter engine cowlings by replacing the currently used intumescent coating with a ceramic coating material, Cerakote C-7700Q. Oven and flame tests were designed and conducted to evaluate the heat resistance of Cerakote C-7700Q. The test results show that the currently used painting scheme of the engine cowlings failed the 220°C oven test while after replacing the epoxy seal coat with the Cerakote, the new painting system passed the 220°C test in regards to painting bubbling. Based on that, a new painting scheme with C-7700Q implemented was recommended.
Journal Article

Modeling of Ducted-Fan and Motor in an Electric Aircraft and a Preliminary Integrated Design

2018-10-04
Abstract Electric ducted-fans with high power density are widely used in hybrid aircraft, electric aircraft, and VTOL vehicles. For the state-of-the-art electric ducted-fan, motor cooling restricts the power density increase. A motor design model based on the fan hub-to-tip ratio proposed in this article reveals that the thermal coupling effect between fan aerodynamic design and motor cooling design has great potential to increase the power density of the motor in an electric propulsion system. A smaller hub-to-tip ratio is preferred as long as the power balance and cooling balance are satisfied. Parametric study on a current 6 kW electric ducted-fan system shows that the highest motor power density could be increased by 246% based on the current technology. Finally, a preliminary design was obtained and experiments were conducted to prove the feasibility of the model.
Journal Article

Exploring Engine Oil Reactivity Effects on End Gas Knock in a Direct-Injection Spark Ignition Engine

2018-03-07
Abstract An experimental study was conducted in a direct-injection (DI) spark-ignited engine to determine the extent to which oil reactivity impacts combustion phasing and knock propensity. Three engine oils were examined: a baseline 20W30 oil from conventional base stock, a 5W30 oil from a synthetic base stock, and a jet oil from a hindered ester base stock. The engine was operated at a constant fueling rate of 24.7 mg/injection for two engine speed conditions (1500 and 2000 rpm) using two cam profile conditions (high and low lift), for a total of four operating conditions. Spark timing sweeps were conducted at each of the four operating conditions. Results were analyzed for an engine oil impact on combustion phasing, cycle-to-cycle variability, combustion duration, knock propensity, and knock intensity. No correlation between engine oil type and any of these performance metrics could be identified.
Journal Article

Investigations on Spark and Corona Ignition of Oxymethylene Ether-1 and Dimethyl Carbonate Blends with Gasoline by High-Speed Evaluation of OH* Chemiluminescence

2018-03-01
Abstract Bio-fuels of the 2nd generation constitute a key approach to tackle both Greenhouse Gas (GHG) and air quality challenges associated with combustion emissions of the transport sector. Since these fuels are obtained of residual materials of the agricultural industry, well-to-tank CO2 emissions can be significantly lowered by a closed-cycle of formation and absorption of CO2. Furthermore, studies of bio-fuels have shown reduced formation of particulate matter on account of the fuels’ high oxygen content therefore addressing air quality issues. However, due to the high oxygen content and other physical parameters these fuels are expected to exhibit different ignition behaviour. Moreover, the question is whether there is a positive superimposition of the fuels ignition behaviour with the benefits of an alternative ignition system, such as a corona ignition.
Journal Article

Soot Observations and Exhaust Soot Comparisons from Ethanol-Blended and Methanol-Blended Gasoline Combustion in a Direct-Injected Engine

2018-05-07
Abstract Particulate formation was studied under homogeneous-intent stoichiometric operating conditions when ethanol-blended (E10) or methanol-blended (M20) gasoline fuel was injected during intake stroke of a 4-stroke direct-injected engine. The engine was tested at wide open throttle under naturally aspirated conditions for a speed-load of 1500 rev/min and 9.8 bar indicated mean effective pressure. In-cylinder soot observations and exhaust soot measurements were completed for different fuel rail pressures, injection timings, coolant and piston temperatures of the optical engine. Fuel delivery settings were tested with both single and split injections during intake stroke. The target piston temperature of the optical engine was attained using pre-determined number of methane port fuel injection firing cycles. Overall, the in-cylinder soot observations correlated well with the engine-out soot measurements. A warmer cylinder head favored soot reduction for both fuels.
Journal Article

Effect of Spray-Exhaust Gas Interactions on Ammonia Generation in SCR Mixing Sections

2018-05-22
Abstract The selective catalytic reduction (SCR) of nitrogen oxides with ammonia is a promising solution to meet upcoming emission regulations for lean-burning combustion engines. Due to the toxicity of ammonia, exclusively SCR systems with precursor substances, e.g., a urea-water solution (UWS), are available or being developed. The determining factors for the efficiency of SCR systems are sufficient ammonia generation and homogenization upstream of the catalytic converter. In the first part, this study presents an experimental investigation of the occurring mechanisms during ammonia generation from UWS droplets; including the evaporation of water, the thermal decomposition of urea, and droplet-wall interactions. In the second part, the observed physical and chemical phenomena are mathematically described and constitute the basis for the development of a simulation model. For this purpose, experiments by means of TGA were conducted to thoroughly investigate the UWS decomposition.
Journal Article

Compatibility Assessment of Fuel System Thermoplastics with Bio-Blendstock Fuel Candidates Using Hansen Solubility Analysis

2018-03-01
Abstract The compatibility of key fuel system infrastructure plastics with 39 bio-blendstock fuel candidates was examined using Hansen solubility analysis. Fuel types included multiple alcohols, esters, ethers, ketones, alkenes and one alkane. These compounds were evaluated as neat molecules and as blends with the gasoline surrogate, dodecane and a mix of dodecane and 10% ethanol (E10D). The plastics included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), polybutylene terephthalate (PBT), polypropylene (PP), high density polyethylene (HDPE), along with several nylon grades. These materials have been rigorously studied with other fuel types, and their volume change results were found to correspond well with their predicted solubility levels.
Journal Article

Impact of Siloxanes in Biomethane on the Performance of a CNG Vehicle

2018-03-23
Abstract In this paper, the results of experiments to determine the effects of silicon-containing compounds in biogas on the performance of spark-ignited gas engines for use in CNG vehicles are presented. Initial research was performed on micro-CHP units, which have many features common with automotive engines, to identify engine components sensitive for silica deposition prior to investigating a practical CNG engine. The experiments on the micro-CHP units revealed that the catalyst was the most sensitive part for silica fouling, with strong impact on the reduction of NOx. With the insight gained from these experiments, an 9-week endurance test was performed on a light-duty CNG vehicle.
Journal Article

Literature Review on the Effects of Organometallic Fuel Additives in Gasoline and Diesel Fuels

2018-04-18
Abstract A literature review was conducted and fuel survey data were obtained to identify the use of metallic fuel additives (MFAs) within market fuels and determine their effects on engines, exhaust systems, and vehicle performance. The primary focus was on modern vehicles equipped with on-board diagnostic (OBD) systems and advanced emissions control systems. For gasoline, this includes vehicles categorized as National Low Emission Vehicles (NLEV) and Tier 2 or beyond in the U.S., and Euro-3 through Euro-6 in the EU. For diesel, this includes engines/vehicles with original equipment manufacturer (OEM)-equipped oxidation catalysts and diesel particulate filters. The literature search of peer-reviewed papers and other publicly available articles returned over 100 items relevant to the use of organometallic fuel additives, but did not provide significant evidence of widespread use of MFAs in either gasoline or diesel fuels.
Journal Article

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

2018-10-25
Abstract This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations.
Journal Article

Limitations of Monoolein in Simulating Water-in-Fuel Characteristics of EN590 Diesel Containing Biodiesel in Water Separation Testing

2018-10-18
Abstract In modern diesel fuel a proportion of biodiesel is blended with petro-diesel to reduce environmental impacts. However, it can adversely affect the operation of nonwoven coalescing filter media when separating emulsified water from diesel fuel. This can be due to factors such as increasing water content in the fuel, a reduction in interfacial tension (IFT) between the water and diesel, the formation of more stable emulsions, and the generation of smaller water droplets. Standard water/diesel separation test methods such as SAE J1488 and ISO 16332 use monoolein, a universal surface-active agent, to simulate the effects of biodiesel on the fuel properties as part of water separation efficiency studies. However, the extent to which diesel/monoolein and diesel/biodiesel blends are comparable needs to be elucidated if the underlying mechanisms affecting coalescence of very small water droplets in diesel fuel with a low IFT are to be understood.
Journal Article

Improvement in DCT Shaft Lubrication through CFD Method

2018-10-25
Abstract Dual-clutch transmission (DCT) output shaft 1 (OS1) mount position is higher than the transmission lubricant level. Needle bearings and idler gears on OS1-insufficient lubrication issues and the transmission lubrication system were investigated. In the design model, the transmission housing lubrication channel and oil guide component design were studied. For numerical analysis, the STAR-CCM+ software was used to simulate transmission internal complex oil-gas multiphase transient flow morphology that monitored the four bore oil churning volumes of OS1. Finally, lubrication test results affirm simulation predictions that idler gears, needle bearings, and synchronizer rings on OS1 obtain sufficient lubrication provided that a reliable method to inspect lubrication design functions is available.
Journal Article

Adaptive Transmission Shift Strategy Based on Online Characterization of Driver Aggressiveness

2018-06-04
Abstract Commercial vehicles contribute to the majority of freight transportation in the United States. They are also significant fuel consumers, with over 23% of fuel used in transportation in the United States. The gas price volatility and increasingly stringent regulation on greenhouse-gas emissions have driven manufacturers to adopt new fuel-efficient technologies. Among others, an advanced transmission control strategy, which can provide tangible improvement with low incremental cost. In the commercial sector, individual drivers have little or no interest in vehicle fuel economy, contrary to fleet owners. Aggressive driving behavior can greatly increase the real-world vehicle fuel consumption. However, the effectiveness of transmission calibration to match the shift strategy to the driving characteristics is still a challenge.
Journal Article

Sliding Mode Control of Hydraulic Excavator for Automated Grading Operation

2018-06-07
Abstract Although ground grading is one of the most common tasks that hydraulic excavators perform in typical work sites, proper grading is not easy for less-skilled operators as it requires coordinated manipulation of multiple hydraulic cylinders. In order to help alleviate this difficulty, automated grading systems are considered as an effective alternative to manual operations of hydraulic excavators. In this article, a sliding mode controller design is presented for automated grading control of a hydraulic excavator. First, an excavator manipulator model is developed in Simulink by using SimMechanics and SimHydraulics toolboxes. Then, a sliding mode controller is designed to control the manipulator to trace a predefined trajectory for a grading task. For a comparison study, a PI controller is used to control the manipulator to perform a grading task following the same desired trajectory and the performance is compared with those obtained by the sliding mode controller.
Journal Article

Aging Effects of Catalytic Converters in Diesel Exhaust Gas Systems and Their Influence on Real Driving NOx Emissions for Urban Buses

2018-06-18
Abstract The selective catalytic reduction (SCR) of nitrogen oxides seems to be the most promising technique to meet prospective emission regulations of diesel-driven commercial vehicles. In the case of developing cost-effective catalytic converters with comparably high activity, selectivity, and resistance against aging, ion-exchanged zeolites play a major role. This study presents, firstly, a brief literature review and subsequently a discussion of an extensive conversion analysis of exemplary Cu/ and Fe/zeolites, as well as a homogeneous admixture of both. The aging stages of SCR catalysts deserve particular attention in this study. In addition, the aging condition of the diesel oxidation catalyst (DOC) was analyzed, which influences the nitrogen dioxide (NO2) formation, because the NO2/nitrogen oxides (NOx) ratio upstream from the SCR converter could be identified as a key factor for low temperature NOx conversion.
Journal Article

Vibration Response Properties in Frame Hanging Catalyst Muffler

2018-07-24
Abstract Dynamic stresses exist in parts of a catalyst muffler caused by the vibration of a moving vehicle, and it is important to clarify and predict the vibration response properties for preventing fatigue failures. Assuming a vibration isolating installation in the vehicle frame, the vibration transmissibility and local dynamic stress of the catalyst muffler were examined through a vibration machine. Based on the measured data and by systematically taking vibration theories into consideration, a new prediction method of the vibration modes and parameters was proposed that takes account of vibration isolating and damping. A lumped vibration model with the six-element and one mass point was set up, and the vibration response parameters were analyzed accurately from equations of motion. In the vibration test, resonance peaks from the hanging bracket, rubber bush, and muffler parts were confirmed in three excitation drives, and local stress peaks were coordinate with them as well.
Journal Article

3D-CFD-Study of Aerodynamic Losses in Compressor Impellers

2018-07-05
Abstract Due to the increasing requirements for efficiency, the wide range of characteristics and the improved possibilities of modern development and production processes, compressors in turbochargers have become more individualized in order to adapt to the requirements of internal combustion engines. An understanding of the working mechanisms as well as an understanding of the way that losses occur in the flow allows a reduced development effort during the optimization process. This article presents three-dimensional (3D) Computational Fluid Dynamics (CFD) investigations of the loss mechanisms and quantitative calculations of individual losses. The 3D-CFD method used in this article will reduce the drawbacks of one-dimensional calculation as far as possible. For example, the twist of the blades is taken into account and the “discrete” method is used for loss calculation instead of the “average” method.
Journal Article

Hydro-Pneumatic Energy Harvesting Suspension System Using a PSO Based PID Controller

2018-08-01
Abstract In this article, a unique design for Hydro-Pneumatic Energy Harvesting Suspension HPEHS system is introduced. The design includes a hydraulic rectifier to maintain one-way flow direction in order to obtain maximum power generation from the vertical oscillation of the suspension system and achieve handling and comfort car drive. A mathematical model is presented to study the system dynamics and non-linear effects for HPEHS system. A simulation model is created by using Advanced Modeling Environment Simulations software (AMEsim) to analyze system performance. Furthermore, a co-simulation platform model is developed using Matlab-Simulink and AMEsim to optimize the PID controller parameters of the external variable load resistor applied on the generator by using Particle Swarm Optimization (PSO).
Journal Article

Computational Fluid Dynamic Simulation of In-Cylinder Pressures to Validate High-Range VCR

2018-10-22
Abstract This article serves as a proof-of-concept and feasibility analysis regarding a variable compression ratio (VCR) engine design utilizing an exhaust valve opening during the compression stroke to vary the compression ratio instead of the traditional method of changing the cylinder or piston geometry patented by Ford, Mercedes-Benz, Nissan, Peugeot, Gomecsys, et al. [1]. In this concept, an additional exhaust valve opening was used to reduce the virtual compression ratio of the engine, without geometric changes. A computational fluid dynamic model in ANSYS Forte was used to simulate a single-cylinder, cold flow, four-stroke, direct injection engine cycle. In this model, the engine was simulated at a compression ratio of 10:1. Then, the model was modified to a compression ratio of 17:1. Then, an additional valve opening at the end of the compression stroke was added to the 17:1 high compression model.
X