Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Journal Article

Determination of Influence of Parameters on Undercarriage Shock Absorber

2018-12-31
Abstract The simple oleo pneumatic (shock absorber) model was developed using the available computational fluid dynamics (CFD) program to understand how various parameters influence the performance of the undercarriage shock absorber. The study is divided into two parts: first part is focused on the influence of orifice geometry and the second part of the study is focused on the other parameters including chamber geometry. Both the studies are carried out using design of experiments (DOE) for the same output characteristics (response). In this study, the impacts on the flow behavior due to the orifice shapes are also studied. The results and the other outcomes are shown in the form of DOE parameters such as main effect plots and interaction plots.
Journal Article

CFD Windshield Deicing Simulations for Commercial Vehicle Applications

2018-04-06
Abstract Windshield deicing performance is a key metric for HVAC system development and optimization within the sphere of commercial vehicle design. The primary physical parameters that drive this metric are pressure drops in the HVAC ducting, flow rate of the air through the system, and the transient vent temperature rise affected by engine coolant warm-up. However, many design engineers also have to take underhood and instrument panel (IP) space constraints into consideration while trying to optimize a new HVAC system design. This study leverages historical deicing simulation methodologies in conjunction with modern computational horsepower so as to optimize the HVAC ductwork in the studied commercial truck at the beginning of the design phase. By iterating on a design in the computational domain under steady-state and transient flow and thermal conditions, a robust HVAC system design can be created even prior to the prototyping stage of development.
Journal Article

Aerodynamic Analysis of Cooling Airflow for Different Front-End Designs of a Heavy-Duty Cab-Over-Engine Truck

2018-04-07
Abstract Improving the aerodynamics of heavy trucks is an important consideration in the strive for more energy-efficient vehicles. Cooling drag is one part of the total aerodynamic resistance acting on a vehicle, which arises as a consequence of air flowing through the grille area, the heat exchangers, and the irregular under-hood area. Today cooling packages of heavy trucks are dimensioned for a critical cooling case, typically when the vehicle is driving fully laden, at low speed up a steep hill. However, for long-haul trucks, mostly operating at highway speeds on mostly level roads, it may not be necessary to have all the cooling airflow from an open-grille configuration. It can therefore be desirable for fuel consumption purposes, to shut off the entire cooling airflow, or a portion of it, under certain driving conditions dictated by the cooling demands. In Europe, most trucks operating on the roads are of cab-over-engine type, as a consequence of the length legislations present.
Journal Article

Investigation of Passive Porosity as a Means for Bluff-Body Drag Reduction

2018-03-16
Abstract An investigation into the capability of passive porosity to reduce the drag of a bluff-body is presented. This initial work involves integrating varying degrees of porosity into the side and back faces of a small-scale model to determine optimum conditions for maximum drag reduction. Both force and pressure measurements at differing degrees of model yaw are presented, with the conditions for optimum performance, identified. At a length-based Reynolds number of 2.3 × 106, results showed a maximum drag reduction of 12% at zero yaw when the ratio of the open area on the back face relative to the side faces was between two and four. For all non-zero yaw angles tested, this ratio reduced to approximately two, with the drag benefit reducing to 6% at 10.5 degrees. From a supplementary theoretical analysis, calculated optimum bleed rate into the base for maximum drag reduction, also showed reasonable agreement to other results reported previously.
Journal Article

Carbon Fiber/Epoxy Mold with Embedded Carbon Fiber Resistor Heater - Case Study

2018-04-07
Abstract The paper presents a complete description of the design and manufacturing of a Carbon Fiber/epoxy mold with an embedded Carbon Fiber resistor heater, and the mold performances in terms of its surface temperature distribution and thermal deformations resulting from the heating. The mold was designed for manufacturing aileron skins from Vacuum Bag Only prepreg cured at 135°C. The glass transition temperature of the used resin-hardener system was about 175°C. To ensure homogenous temperature of the mold working surface in the course of curing, the Carbon Fiber heater was embedded in a layer of a highly heat-conductive cristobalite/epoxy composite, forming the core of the mold shell. Because the cristobalite/epoxy composite displayed much higher thermal expansion than CF/epoxy did, thermal stresses could arise due to this discrepancy in the course of heating.
Journal Article

Structural Optimization of a Pickup Frame Combining Thickness, Shape and Feature Parameters for Lightweighting

2018-08-08
Abstract The methods for improving the torsion stiffness of a pickup chassis frame were discussed, including increasing the part thickness on frame, enlarging the cross section of rails, and adding bulkhead feature inside the rails. Sizing optimization was conducted to get the optimal thickness configuration for frame parts and meet the siffness requirement. The cross section of frame rails were parameterized and shape optimization was conduted to get the optimal rail cross sections for stiffness improvement. Additional bulkheads were added to the frame rails, and sizing optimization conducted to find the most effective bulkheads to add and their optimal gauge. A material efficiency ratio μ is used to evaluate the efficiency of a design change with respect to torsion stiffness. Among those torsion improvement methods, adding bulkhead feature gives the highest material efficiency ratio, but the stiffness improvement range is very limited.
Journal Article

Study of the Sliding Door Shaking Problem and Optimization Based on the Application of Euler’s Spiral

2018-10-03
Abstract This study focuses on the sudden shaking phenomenon of a sliding door passing through a corner. This phenomenon requires attention because shaking during movement can lead to a harsh operation feeling and a short service life. An experiment based on a test setup was conducted, and the sudden change in the acceleration of a sliding door panel was measured. Based on multi-body dynamics (MBD) analysis and a rigid-flexible coupled model of the sliding door system, the cause of the sudden shaking was determined to be the discontinuous curvature of the middle rail trajectory. A transition curve was proposed as the solution for the discontinuous curvature, and Euler’s spiral was applied in the redesign of the middle rail trajectory. Verified by simulations, the results exhibit considerable improvement in sliding door movement stability, with large reductions in the maximum center of mass (CM) acceleration and guide roller impact force.
Journal Article

Numerical Analysis of Blast Protection Improvement of an Armored Vehicle Cab by Composite Armors and Anti-Shock Seats

2018-12-05
Abstract The objective of this article is to evaluate the effects of different blast protective modules to military vehicle structures and occupants. The dynamic responses of the V-shape integral basic armor, the add-on honeycomb sandwich structure module, and the anti-shock seat-dummy system were simulated and analyzed. The improvements of occupant survivability by different protective modules were compared using occupant injury criteria. The integral armored cab can maintain the integrity of the cab body structure. The add-on honeycomb sandwich armor reduces the peak structural deformation and velocity of the cab floor by 34.9% and 47.4%, respectively, compared with the cab with integral armors only. The integral armored cab with the anti-shock seat or the honeycomb sandwich structures reduces the occupant shock responses below the injury criteria. For different blast threat intensities, the selection of appropriate protective modules can meet protection requirements.
Journal Article

Design of High-Lift Airfoil for Formula Student Race Car

2018-12-05
Abstract A two-dimensional model of three elements, high-lift airfoil, was designed at a Reynolds number of ?????? using computational fluid dynamics (CFD) to generate downforce with good lift-to-drag efficiency for a formula student open-wheel race car basing on the nominal track speeds. The numerical solver uses the Reynolds-averaged Navier-Stokes (RANS) equation model coupled with the Langtry-Menter four-equation transition shear stress transport (SST) turbulence model. Such model adds two further equations to the ?? − ?? SST model resulting in an accurate prediction for the amount of flow separation due to adverse pressure gradient in low Reynolds number flow. The ?? − ?? SST model includes the transport effects into the eddy-viscosity formulation, whereas the two equations of transition momentum thickness Reynolds number and intermittency should further consider transition effects at low Reynolds number.
Journal Article

Industrial Framework for Identification and Verification of Hot Spots in Automotive Composite Structures

2019-05-16
Abstract In this article, a framework for efficient strength analysis of large and complex automotive composite structures is presented. This article focuses on processes and methods that are compliant with common practice in the automotive industry. The proposed framework uses efficient shell models for identification of hot spots, automated remodelling and analysis of found hot spots with high-fidelity models and finally an automated way of post-processing the detailed models. The process is developed to allow verification of a large number of load cases in large models and still consider all potential failure modes. The process is focused on laminated composite primary structures. This article highlights the challenges and tools for setting up this framework.
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

Mixture Distributions in Autonomous Decision-Making for Industry 4.0

2019-05-29
Abstract Industry 4.0 is expected to revolutionize product development and, in particular, manufacturing systems. Cyber-physical production systems and digital twins of the product and process already provide the means to predict possible future states of the final product given the current production parameters. With the advent of further data integration coupled with the need for autonomous decision-making, methods are needed to make decisions in real time and in an environment of uncertainty in both the possible outcomes and in the stakeholders’ preferences over them. This article proposes a method of autonomous decision-making in data-intensive environments, such as a cyber-physical assembly system. Theoretical results in group decision-making and utility maximization using mixture distributions are presented. This allows us to perform calculations on expected utility accurately and efficiently through closed-form expressions, which are also provided.
Journal Article

A Study on Lightweight Design of Automotive Front Rails Using Tailored Blanks by Nonlinear Structural Optimization

2018-11-07
Abstract Tailored blanks offer great lightweighting opportunities for automotive industry and were applied on the front rails of a sedan in this research. To achieve the most efficient material usage, all the front rail parts were tailored into multiple sheets with the gauge of each sheet defined as a design variable for optimization. The equivalent static loads (ESL) method was adopted for linear optimization and the Insurance Institute for Highway Safety (IIHS) moderate overlap frontal crash as the nonlinear analysis load case. The torsion and bending stiffness of the sedan body in white (BIW) were set as design constraints. The occupant compartment intrusion in IIHS moderate overlap front crash was set as design objective to be minimized. The optimal thickness configuration for the tailored front rail designs was obtained through ESL optimization for multiple mass saving targets.
Journal Article

Comparison of Various Drag Reduction Devices and Their Aerodynamic Effects on the DrivAer Model

2018-07-05
Abstract In this study, two types of drag reduction devices (a horizontal plate, and a vertical plate) are used to weaken the downwash of the upper flow and c-pillar vortex of the DrivAer notchback model driving at high speed (140 km/h). By analyzing and comparing 15 cases in total, the aerodynamic drag reduction mechanism can be used in the development of vehicles. First, various CFD simulation conditions of a baseline model were compared to determine the analysis condition that efficiently calculates the correct aerodynamic drag. The vertical plate and horizontal plate applied in the path of the c-pillar vortex and downwash suppressed vortex development and induced rapid dissipation. As a result, the application of a 50-mm wedge-shaped vertical plate to the trunk weakened the vortex and reduced the drag by 3.3% by preventing the side flow from entering the trunk top.
Journal Article

Passive Flow Control on a Ground-Effect Diffuser Using an Inverted Wing

2018-08-13
Abstract In this experimental and computational study a novel application of aerodynamic principles in altering the pressure recovery behavior of an automotive-type ground-effect diffuser was investigated as a means of enhancing downforce. The proposed way of augmenting diffuser downforce production is to induce in its pressure recovery action a second pressure drop and an accompanying pressure rise region close to the diffuser exit. To investigate this concept with a diffuser-equipped bluff body, an inverted wing was situated within the diffuser flow channel, close to the diffuser exit. The wing’s suction surface acts as a passive flow control device by increasing streamwise flow velocity and reducing static pressure near the diffuser exit. Therefore, a second-stage pressure recovery develops along the diffuser’s overall pressure recovery curve as the flow travels from the diffuser’s low pressure, high velocity inlet to its high pressure, low velocity exit.
Journal Article

Steady Aeroelastic Response Prediction and Validation for Automobile Hoods

2018-07-10
Abstract The pursuit of improved fuel economy through weight reduction, reduced manufacturing costs, and improved crash safety can result in increased compliance in automobile structures. However, with compliance comes an increased susceptibility to aerodynamic and vibratory loads. The hood in particular withstands considerable aerodynamic force at highway speeds, creating the potential for significant aeroelastic response that may adversely impact customer satisfaction and perception of vehicle quality. This work seeks an improved understanding in computational and experimental study of fluid-structure interactions between automobile hoods and the surrounding internal and external flow. Computational analysis was carried out using coupled CFD-FEM solvers with detailed models of the automobile topology and structural components. The experimental work consisted of wind tunnel tests using a full-scale production vehicle.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
X