Refine Your Search

Topic

Search Results

Journal Article

Evaluation of the Injury Risks of Truck Occupants Involved in a Crash as a Result of Errant Truck Platoons

2020-03-11
Abstract Truck platooning comprises a number of trucks equipped with automated lateral and longitudinal vehicle control technology, which allows them to move in tight formation with short following distances. This study is an initial step toward developing an understanding of the occupant injury risks associated with the multiple sequential impacts between truck platoons and roadside safety barriers, regardless of whether the crash is associated with a malfunction of automated control or human operation. Full-scale crash impacts of a tractor-trailer platoon into a concrete bridge guardrail were simulated for a specific Test Level condition according to the Manual for Assessing Safety Hardware (MASH) standards. The model of the bridge barrier was developed based on its drawings, and material properties were assigned according to literature data.
Journal Article

Analysis of Driving Performance Based on Driver Experience and Vehicle Familiarity: A UTDrive/Mobile-UTDrive App Study

2019-11-21
Abstract A number of studies have shown that driving an unfamiliar vehicle has the potential to introduce additional risk, especially for novice drivers. However, such studies have generally used statistical methods based on analyzing crash and near-crash data from a range of driver groups, and therefore the evaluation has the potential to be subjective and limited. For a more objective perspective, this study suggests that it would be worthwhile to consider vehicle dynamic signals obtained from the Controller Area Network (CAN-Bus) and smartphones. This study, therefore, is focused on the effect of driver experience and vehicle familiarity for issues in driver modeling and distraction. Here, a group of 20 drivers participated in our experiment, with 13 of them having participated again after a one-year time lapse in order for analysis of their change in driving performance.
Journal Article

A Personalized Lane-Changing Model for Advanced Driver Assistance System Based on Deep Learning and Spatial-Temporal Modeling

2019-11-14
Abstract Lane changes are stressful maneuvers for drivers, particularly during high-speed traffic flows. However, modeling driver’s lane-changing decision and implementation process is challenging due to the complexity and uncertainty of driving behaviors. To address this issue, this article presents a personalized Lane-Changing Model (LCM) for Advanced Driver Assistance System (ADAS) based on deep learning method. The LCM contains three major computational components. Firstly, with abundant inputs of Root Residual Network (Root-ResNet), LCM is able to exploit more local information from the front view video data. Secondly, the LCM has an ability of learning the global spatial-temporal information via Temporal Modeling Blocks (TMBs). Finally, a two-layer Long Short-Term Memory (LSTM) network is used to learn video contextual features combined with lane boundary based distance features in lane change events.
Journal Article

Artificial Lightning Tests on Metal and CFRP Automotive Bodies: A Comparative Study

2019-01-07
Abstract Carbon fiber reinforced plastic (CFRP) has been used in automobiles as well as airplanes. Because of its light weight and high strength, CFRP is a good choice for making vehicle bodies lighter, which would improve fuel economy. Conventional metal bodies provide a convenient body return for electric wiring and offer good shielding against electromagnetic fields. Although CFRP is a conductor, its conductivity is much lower than that of metals. Therefore, CFRP bodies are usually not useful for electric wiring. In thunderstorms, an automotive body is considered to be a Faraday cage that protects the vehicle’s occupants from the potential harms of lightning. Before CFRP becomes widely applied to automotive bodies, its electric and electromagnetic properties need to be investigated in order to determine whether it also works as a Faraday cage against lightning. In this article, CFRP and metal body vehicles were tested under artificial lightning.
Journal Article

Improvement in Gear Shift Comfort by Reduction in Double Bump Force of Passenger Vehicles

2017-10-08
Abstract In today’s competitive automobile market, driver comfort is at utmost importance and the bar is being raised continuously. Gear Shifting is a crucial customer touch point. Any issue or inconvenience caused while shifting gear can result into customer dissatisfaction and will impact the brand image. While there are continual efforts being taken by most of the car manufactures, “Double Bump” in gearshift has remained as a pain area and impact severely on the shift feel. This is more prominent in North-South (N-S) transmissions. In this paper ‘Double Bump’ is a focus area and a mathematical / analytical approach is demonstrated by analyzing ‘impacting parameters’ and establishing their co-relation with double bump. Additionally, the results are also verified with a simulation model.
Journal Article

A Study of an Integrated HVAC-Vehicle Model for Automotive Vehicles

2018-04-18
Abstract The objective of this work is to develop an integrated HVAC-VEHICLE model for climate control studies. A published lumped parameter based HVAC model has been used as the framework for the HVAC modeling with some modifications to realize the climate control and to improve the robustness of the model. R134a (1,1,2,2-Tetrafluoroethane) has been used as the refrigerant fluid in this study. The stand-alone HVAC model has been compared qualitatively with the experimental works available in the literature. The experimental trends of the thermodynamic and performance related parameters of HVAC are reasonably well captured by the HVAC model. In particular, Coefficient of Performance (CoP) was found to decrease with increase in compressor speed and increase in ambient temperature but increase with increase in evaporator blower mass flow rate.
Journal Article

Study of Wedge-Actuated Continuously Variable Transmission

2021-08-23
Abstract The mechanical efficiency of the current continuously variable transmission (CVT) suffers from high pump loss induced by a high-pressure system. A novel wedge mechanism is designed into the CVT clamp actuation system to generate the majority of clamp force mechanically. Therefore, the hydraulic system can operate at a low-pressure level most of the time, and the pump loss is greatly reduced to improve the CVT’s mechanical efficiency. Through dynamic analysis and design optimization, 90% of clamp force is contributed by the wedge mechanism and the rest of the 10% is generated by a conventional hydraulic system. The optimal design is validated through dynamic modeling using Siemens Virtual.Lab software by simulating the wedge clamp force generation, ratio change dynamics, and system response under tip-in conditions. After that, we built prototype components that target 70% of the clamp force contributed by the wedge mechanism and tested them on a transmission dynamometer.
Journal Article

A Framework for Characterizing the Initial Thermal Conditions of Light-Duty Vehicles in Response to Representative Utilization Patterns, Ambient Conditions, and Vehicle Technologies

2021-04-07
Abstract It is widely understood that the thermal state of a light-duty vehicle at the beginning of a trip influences the vehicle performance throughout the drive cycle. Cold starts, or initial states with component temperatures near ambient conditions, are strongly correlated with reduced vehicle performance and energy efficiency and increased emissions. Despite this understanding, there is little literature available that characterizes initial thermal states beyond empirical studies and simplified analyses of dwell times. We introduce a framework that considers vehicle activity patterns, including the previous drive event, duration of the previous dwell event, and relevant ambient conditions occurring during these events. Moreover, the framework allows for technologies to influence the prominence of cold starts and warm starts.
Journal Article

U.S. Light-Duty Vehicle Air Conditioning Fuel Use and Impact of Solar/Thermal Control Technologies

2018-12-11
Abstract To reduce fuel consumption and carbon dioxide (CO2) emissions from mobile air conditioning (A/C) systems, “U.S. Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy Standards” identified solar/thermal technologies such as solar control glazings, solar reflective paint, and active and passive cabin ventilation in an off-cycle credit menu. National Renewable Energy Laboratory (NREL) researchers developed a sophisticated analysis process to calculate U.S. light-duty A/C fuel use that was used to assess the impact of these technologies, leveraging thermal and vehicle simulation analysis tools developed under previous U.S. Department of Energy projects. Representative U.S. light-duty driving behaviors and weighting factors including time-of-day of travel, trip duration, and time between trips were characterized and integrated into the analysis.
Journal Article

Application of a New Method for Comparing the Overall Energy Consumption of Different Automotive Thermal Management Systems

2018-10-03
Abstract This article applies a new method for the evaluation and estimation of real-life energy consumption of two different thermal management systems based on driving behavior in the course of the day. Recent attempts to find energy-efficient thermal management systems for electric and plug-in hybrid electric vehicles have led to using secondary loop systems as an alternative approach for meeting dynamic heating and cooling demands and reducing refrigerant charge. However, the additional layer of thermal resistance, which influences the system’s transient behavior as well as passenger compartment comfort during cool-down or heat-up, makes it difficult to estimate the annual energy consumption. In this article, the overall energy consumption of a conventional and a secondary loop system is compared using a new method for describing actual customers’ driving behavior in the course of the day.
Journal Article

Experimental Study on the Internal Resistance and Heat Generation Characteristics of Lithium Ion Power Battery with NCM/C Material System

2018-04-18
Abstract Heat generation characteristics of lithium ion batteries are vital for both the optimization of the battery cells and thermal management system design of battery packs. Compared with other factors, internal resistance has great influence on the thermal behavior of Li-ion batteries. Focus on a 3 Ah pouch type battery cell with the NCM/C material system, this paper quantitatively evaluates the battery heat generation behavior using an Extended Volume-Accelerating Rate Calorimeter in combination with a battery cycler. Also, internal resistances of the battery cell are measured using both the hybrid pulse power characteristic (HPPC) and electro-chemical impedance spectroscopy (EIS) methods. Experimental results show that the overall internal resistance obtained by the EIS method is close to the ohmic resistance measured by the HPPC method. Heat generation power of the battery cell is small during discharge processes lower than 0.5 C-rate.
Journal Article

Parasitic Battery Drain Problems and AUTOSAR Acceptance Testing

2018-04-18
Abstract Battery Drain problems can occur in the vehicle due to improper network management between electronic control units (ECUs). Aim of this paper is to identify the factors that cause transmission and cease of transmission of a network management message of an ECU along with its application messages that controls the sleep/wake-up performance of other ECUs in the network. Strategy used here is, based on the root cause analysis of problems found in Display unit in vehicle environment, the functional CAN signals impacting sleep/wake-up behavior is re-mapped along with the state flow transition of AUTOSAR NM Algorithm. A re-defined test case design and simulation for vehicle model is created. Especially it focuses on validating the impact of functional CAN signals on DUT’s sleep/wake-up performance.
Journal Article

On WTW and TTW Specific Energy Consumption and CO2 Emissions of Conventional, Series Hybrid and Fully Electric Buses

2018-04-17
Abstract Making use of a specifically designed dynamical vehicle model, the authors here presented the results of an activity for the evaluation of energy consumption and CO2 emissions of buses for urban applications. Both conventional and innovative (series hybrid, and fully electric) vehicles were considered to obtain interesting comparative conclusions. The derived tool was used to simulate the dynamical behaviour of these vehicles on a number of kinematic profiles measured during real buses operation in different contexts, varying from really congested city centre routes to fast-lane operated services. It was so possible to evaluate the energetic performances of those buses on a Tank-to-Wheel (TTW) basis.
Journal Article

Design, Analysis, and Optimization of a Multi-Speed Powertrain for Class-7 Electric Trucks

2018-04-17
Abstract The development, analysis, and optimization of battery electric class-7 heavy-duty trucks equipped with multi-speed transmissions are discussed in this paper. The designs of five new traction motors-fractional-slot, concentrated winding machines-are proposed for use in heavy-duty electric trucks. The procedure for gear-ratio range selection is outlined and ranges of gear ratios for three-to six-speed transmission powertrains are calculated for each of the proposed electric traction motors. The simulation and gear-ratio optimization tasks for class-7 battery electric trucks are formulated. The energy consumption of the e-truck with the twenty possible powertrain combinations is minimized over the four driving cycles and the most efficient powertrain layouts that meet the performance criteria are recommended.
Journal Article

Uncertainty Analysis of High-Frequency Noise in Battery Electric Vehicle Based on Interval Model

2019-02-01
Abstract The high-frequency noise issue is one of the most significant noise, vibration, and harshness problems, particularly in battery electric vehicles (BEVs). The sound package treatment is one of the most important approaches toward solving this problem. Owing to the limitations imposed by manufacturing error, assembly error, and the operating conditions, there is often a big difference between the actual values and the design values of the sound package components. Therefore, the sound package parameters include greater uncertainties. In this article, an uncertainty analysis method for BEV interior noise was developed based on an interval model to investigate the effect of sound package uncertainty on the interior noise of a BEV. An interval perturbation method was formulated to compute the uncertainty of the BEV’s interior noise.
Journal Article

High Power-Density, High Efficiency, Mechanically Assisted, Turbocharged Direct-Injection Jet-Ignition Engines for Unmanned Aerial Vehicles

2019-05-02
Abstract More than a decade ago, we proposed combined use of direct injection (DI) and jet ignition (JI) to produce high efficiency, high power-density, positive-ignition (PI), lean burn stratified, internal combustion engines (ICEs). Adopting this concept, the latest FIA F1 engines, which are electrically assisted, turbocharged, directly injected, jet ignited, gasoline engines and work lean stratified in a highly boosted environment, have delivered peak power fuel conversion efficiencies well above 46%, with specific power densities more than 340 kW/liter. The concept, further evolved, is here presented for unmanned aerial vehicle (UAV) applications. Results of simulations for a new DI JI ICE with rotary valve, being super-turbocharged and having gasoline or methanol as working fuel, show the opportunity to achieve even larger power densities, up to 430 kW/liter, while delivering a near-constant torque and, consequently, a nearly linear power curve over a wide range of speeds.
Journal Article

Mathematical Model of Heat-Controlled Accumulator (HCA) for Microgravity Conditions

2020-01-20
Abstract It is reasonable to use a two-phase heat transfer loop (TPL) in a thermal control system (TCS) of spacecraft with large heat dissipation. One of the key elements of TPL is a heat-controlled accumulator (HCA). The HCA represents a volume which is filled with vapor and liquid of a single working fluid without bellows. The pressure in a HCA is controlled by the heater. The heat and mass transfer processes in the HCA can proceed with a significant nonequilibrium. This has implications on the regulation of TPL. This article presents a mathematical model of nonequilibrium heat and mass transfer processes in an HCA for microgravity conditions. The model uses the equations of mass and energy conservation separately for the vapor and liquid phases. Interfacial heat and mass transfer is also taken into account. It proposes to use the convective component k for the level of nonequilibrium evaluation.
Journal Article

Parametric Studies on Airfoil-Boundary Layer Ingestion Propulsion System

2020-03-11
Abstract From the fact that a propulsor consumes less power for a given thrust if the inlet air is slower, simulations are conducted for a propulsor imposed behind an airfoil as ideal boundary layer ingestion (BLI) propulsor to stand on the benefits of this configuration from the point of view of power and efficiency and to get a closer look on the mutual interaction between them. This interaction is quantified by the impact on three main sets of parameters, namely, power consumption, boundary layer properties, and airfoil performance. The position and size of the propulsor have great influence on the flow around the airfoil. Parametric studies are carried out to understand their influence. BLI propulsor directly affects the power saving and all of the pressure-dependent parameters, including lift and drag. For the present case, power saving reached 14.4% compared to the propeller working in freestream.
Journal Article

Laser-Assisted Filler-Based Joining for Battery Assembly in Aviation

2020-10-19
Abstract A key problem of the construction of fully electric aircraft is the limited energy density of battery packs. It is generally accepted that this can only be overcome via new, denser battery chemistry together with a further increase in the efficiency of power utilization. One appealing approach for achieving the latter is using laser-assisted filler-based joining technologies, which offers unprecedented flexibility for achieving battery cell connections with the least possible electrical loss. This contribution presents our results on the effect of various experimental and process parameters on the electrical and mechanical properties of the laser-formed bond.
Journal Article

An Investigation on the Electrical Energy Capacity of Cylindrical Lithium-Ion and Lithium Iron Phosphate Battery Cells for Hybrid Aircraft

2020-10-19
Abstract Improving the energy performance of batteries can increase the reliability of electric aircraft. To achieve this goal, battery management systems (BMS) are required to keep the temperature within the battery pack and cells below the safety limits and make the temperature distribution as even as possible. Batteries have a limited service life as a result of unwanted chemical reactions, physical changes that cause the loss of active materials in the structure, and internal resistance increase during the charging and discharging cycle of the battery. These changes usually affect the electrical performance of batteries. Battery life can be increased only by reducing or preventing unwanted chemical reactions. Lithium-ion (Li-ion) batteries are a suitable option due to their high specific energy and energy density advantages. In this study, the necessity of heat management is emphasized. The discharge tests of the Li-ion battery provided 94.6 Wh under 10C and 90.9 Wh under 1C.
X