Refine Your Search

Search Results

Viewing 1 to 10 of 10
Journal Article

Toward Improving Vehicle Fuel Economy with ADAS

2018-10-29
Abstract Modern vehicles have incorporated numerous safety-focused advanced driver-assistance systems (ADAS) in the last decade including smart cruise control and object avoidance. In this article, we aim to go beyond using ADAS for safety and propose to use ADAS technology to enable predictive optimal energy management and improve vehicle fuel economy (FE). We combine ADAS sensor data with a previously developed prediction model, dynamic programming (DP) optimal energy management control, and a validated model of a 2010 Toyota Prius to explore FE. First, a unique ADAS detection scope is defined based on optimal vehicle control prediction aspects demonstrated to be relevant from the literature. Next, during real-world city and highway drive cycles in Denver, Colorado, a camera is used to record video footage of the vehicle environment and define ADAS detection ground truth. Then, various ADAS algorithms are combined, modified, and compared to the ground truth results.
Journal Article

Hardware-in-the-Loop (HIL) Implementation and Validation of SAE Level 2 Automated Vehicle with Subsystem Fault Tolerant Fallback Performance for Takeover Scenarios

2018-07-27
Abstract The advancement towards development of autonomy follows either the bottom-up approach of gradually improving and expanding existing Advanced Driver Assist Systems (ADAS) technology where the driver is present in the control loop or the top-down approach of directly developing autonomous vehicle hardware and software using alternative approaches without the driver present in the control loop. Most ADAS systems today fall under the classification of SAE Level 1 which is also referred to as the driver assistance level. The progression from SAE Level 1 to SAE Level 2 or partial automation involves the critical task of merging automated lateral control and automated longitudinal control such that the tasks of steering and acceleration/deceleration are not required to be handled by the driver under certain conditions [1].
Journal Article

Detection of Lane-Changing Behavior Using Collaborative Representation Classifier-Based Sensor Fusion

2018-10-29
Abstract Sideswipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. In this article, a fusion approach is introduced that utilizes data from two differing modality sensors (a front-view camera and an onboard diagnostics (OBD) sensor) for the purpose of detecting driver’s behavior of lane changing. For lane change detection, both feature-level fusion and decision-level fusion are examined by using a collaborative representation classifier (CRC). Computationally efficient detection features are extracted from distances to the detected lane boundaries and vehicle dynamics signals. In the feature-level fusion, features generated from two differing modality sensors are merged before classification, while in the decision-level fusion, the Dempster-Shafer (D-S) theory is used to combine the classification outcomes from two classifiers, each corresponding to one sensor.
Journal Article

Study of Riding Assist Control Enabling Self-Standing in Stationary State

2018-12-04
Abstract In motorcycles, when they are traveling at medium to high speed, the roll stability is usually maintained by the restoration force generated by self-steering effect. However, when the vehicle is stationary or traveling in low speed, sufficient restoring force does not occur because some of the forces, such as centrifugal force, become small. In our study, we aimed at prototyping a motorcycle having a roll stability realized by a steering control when the vehicle is stationary or traveling in low speed. When we considered a mathematical control model to be applied, general models of four-degree-of-freedom had a critical inconvenience that the formulae include nonlinear second derivatives making them excessively complicated for deriving a practically applicable control method. Accordingly, we originally constructed a new control model which has equivalent two point masses (upper and lower from the vehicle’s center of gravity).
Journal Article

HMI for Left Turn Assist (LTA)

2018-03-01
Abstract Potential collisions with oncoming traffic while turning left belong to the most safety-critical situations accounting for ~25% of all intersection crossing path crashes. A Left Turn Assist (LTA) was developed to reduce the number of crashes. Crucial for the effectiveness of the system is the design of the human-machine interface (HMI), i.e. defining how the system uses the calculated crash probability in the communication with the driver. A driving simulator study was conducted evaluating a warning strategy for two use cases: firstly, the driver comes to a stop before turning (STOP), and secondly, the driver moves on without stopping (MOVE). Forty drivers drove through three STOP and two MOVE scenarios. For the STOP scenarios, the study compared the effectiveness of an audio-visual warning with an additional brake intervention and a baseline. For the MOVE scenarios, the study analyzed the effectiveness of the audio-visual warning against a baseline.
Journal Article

Efficient Lane Detection Using Deep Lane Feature Extraction Method

2017-09-23
Abstract In this paper, an efficient lane detection using deep feature extraction method is proposed to achieve real-time lane detection in diverse road environment. The method contains three main stages: 1) pre-processing, 2) deep lane feature extraction and 3) lane fitting. In pre-processing stage, the inverse perspective mapping (IPM) is used to obtain a bird's eye view of the road image, and then an edge image is generated using the canny operator. In deep lane feature extraction stage, an advanced lane extraction method is proposed. Firstly, line segment detector (LSD) is applied to achieve the fast line segment detection in the IPM image. After that, a proposed adaptive lane clustering algorithm is employed to gather the adjacent line segments generated by the LSD method. Finally, a proposed local gray value maximum cascaded spatial correlation filter (GMSF) algorithm is used to extract the target lane lines among the multiple lines.
Journal Article

2-D CFAR Procedure of Multiple Target Detection for Automotive Radar

2017-09-23
Abstract In Advanced Driver Assistant System (ADAS), the automotive radar is used to detect targets or obstacles around the vehicle. The procedure of Constant False Alarm Rate (CFAR) plays an important role in adaptive targets detection in noise or clutter environment. But in practical applications, the noise or clutter power is absolutely unknown and varies over the change of range, time and angle. The well-known cell averaging (CA) CFAR detector has a good detection performance in homogeneous environment but suffers from masking effect in multi-target environment. The ordered statistic (OS) CFAR is more robust in multi-target environment but needs a high computation power. Therefore, in this paper, a new two-dimension CFAR procedure based on a combination of Generalized Order Statistic (GOS) and CA CFAR named GOS-CA CFAR is proposed. Besides, the Linear Frequency Modulation Continuous Wave (LFMCW) radar simulation system is built to produce a series of rapid chirp signals.
Journal Article

Development of a New Neutral Coasting Control Utilizing ADAS and GPS

2019-01-23
Abstract It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than deceleration fuel cutoff (DFCO)-which exists in all current vehicle powertrain controllers-can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Journal Article

A Comprehensive Data Reduction Algorithm for Automotive Multiplexing

2019-04-08
Abstract Present-day vehicles come with a variety of new features like the pre-crash warning, the vehicle-to-vehicle communication, semi-autonomous driving systems, telematics, drive by wire. They demand very high bandwidth from in-vehicle networks. Various ECUs present inside the automotive transmits useful information via automotive multiplexing. Transmission of data in real-time achieves optimum functionality. The high bandwidth and high-speed requirement can be achieved either by using multiple buses or by implementing higher bandwidth. But, by doing so, the cost of the network as well as the complexity of the wiring increases. Another option is to implement higher layer protocol which can reduce the amount of data transferred by using data reduction (DR) techniques, thus reducing the bandwidth usage. The implementation cost is minimal as the changes are required in the software only and not in hardware.
Journal Article

Extending the Magic Formula Tire Model for Large Inflation Pressure Changes by Using Measurement Data from a Corner Module Test Rig

2018-03-05
Abstract Since the tire inflation pressure has a significant influence on safety, comfort and environmental behavior of a vehicle, the choice of the optimal inflation pressure is always a conflict of aims. The development of a highly dynamic Tire Pressure Control System (TPCS) can reduce the conflict of minimal rolling resistance and maximal traction. To study the influence of the tire inflation pressure on longitudinal tire characteristics under laboratory conditions, an experimental sensitivity analysis is performed using a multivalent usable Corner Module Test Rig (CMTR) developed by the Automotive Engineering Group at Technische Universität Ilmenau. The test rig is designed to analyze suspension system and tire characteristics on a roller of the recently installed 4 chassis roller dynamometer. Camber angle, toe angle and wheel load can be adjusted continuously. In addition, it is possible to control the temperature of the test environment between −20 °C and +45 °C.
X