Refine Your Search

Topic

Search Results

Journal Article

Implementation and Optimization of a Variable-Speed Coolant Pump in a Powertrain Cooling System

2020-02-07
Abstract This study investigates methods to precisely control a coolant pump in an internal combustion engine. The goal of this research is to minimize power consumption while still meeting optimal performance, reliability and durability requirements for an engine at all engine-operating conditions. This investigation achieves reduced fuel consumption, reduced emissions, and improved powertrain performance. Secondary impacts include cleaner air for the earth, reduced operating costs for the owner, and compliance with US regulatory requirements. The study utilizes mathematical modeling of the cooling system using heat transfer, pump laws, and boiling analysis to set limits to the cooling system and predict performance changes.
Journal Article

Homogeneous Charge Reactivity-Controlled Compression Ignition Strategy to Reduce Regulated Pollutants from Diesel Engines

2019-03-14
Abstract Reactivity-controlled compression ignition (RCCI) is a dual fuel low temperature combustion (LTC) strategy which results in a wider operating load range, near-zero oxides of nitrogen (NOx) and particulate matter (PM) emissions, and higher thermal efficiency. One of the major shortcomings in RCCI is a higher unburned hydrocarbon (HC) and carbon monoxide (CO) emissions. Unlike conventional combustion, aftertreatment control of HC and CO emissions is difficult to achieve in RCCI owing to lower exhaust gas temperatures. In conventional RCCI, an early direct injection (DI) of low volatile diesel fuel into the premixed gasoline-air mixture in the combustion chamber results in charge stratification and fuel spray wall wetting leading to higher HC and CO emissions. To address this limitation, a homogeneous charge reactivity-controlled compression ignition (HCRCCI) strategy is proposed in the present work, wherein the DI of diesel fuel is eliminated.
Journal Article

Optimizing Cooling Fan Power Consumption for Improving Diesel Engine Fuel Efficiency Using CFD Technique

2019-06-11
Abstract Fan cooling system of an air-cooled diesel engine is optimized using 3D CFD numerical simulation approach. The main objective of this article is to increase engine fuel efficiency by reducing fan power consumption. It is achieved by optimizing airflow rates and flow distribution over the engine surfaces to keep the maximum temperature of engine oil and engine surfaces well within the lubrication and material limit, respectively, at the expense of lower fan power. Based on basic fan laws, a bigger fan consumes lesser power for the same airflow rate as compared to a smaller fan, provided both fans have similar efficiency. Flow analysis is also conducted with the engine head and block modeled as solid medium and fan cooling system as fluid domain. Reynolds-averaged Navier-Stokes turbulence (RANS) equations were solved to get the flow field inside the cooling system and on the engine liner fins. The Moving Reference Frame approach was used for simulating the rotation of a fan.
Journal Article

Challenges in Noise Refinement of a Pure Electric Passenger Vehicle

2021-02-05
Abstract Currently, the governments are encouraging automotive vehicle manufacturers to produce electric vehicles (EVs) as these vehicles have a zero-emission footprint. Generally, the EVs are expected to be quieter compared to internal combustion engine (ICE) vehicles. But the absence of engine noise in EVs brings more challenges for noise, vibration, and harshness (NVH) as the other noise sources become more audible. Most of these noise sources are tonal in nature and, hence, cause discomfort to the passengers. The present work is related to the noise refinement in a pure EV. The dominant noise sources observed in this vehicle are the electric powertrain, cooling fan, and air compressor. The powertrain consists of a traction motor and a gearbox (GB) with a planetary gear system. The root cause identification of electric powertrain noise has been investigated with masking trials and with the acoustic camera.
Journal Article

Microturbine Blade Cooling

2020-05-20
Abstract The main technical barrier to commercial use of microturbines is its low efficiency, not exceeding 15%. Efficiency and specific power are as high as the Turbine Inlet Temperature (TIT), generally limited to 950°C in microturbines, as its tiny rotors make internal blade cooling impossible. This work uses Computational Fluid Dynamics (CFD) to develop an external cooling system of the blades of a microturbine by incorporating a compressor into the disk to blow air over the blades’ walls. The engine used as the basis of the work is the FD-3/64. The work was divided into two steps. In the first, Step 1, the reactive flow in the combustor was simulated to obtain the boundary conditions for Step 2. In Step 2, the flow through the turbine wheel during rotation is simulated. Four rotor models were simulated.
Journal Article

TOC

2021-10-15
Abstract TOC
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
Journal Article

Energy Consumption Test and Analysis Methodology for Heavy-Duty Vehicle Engine Accessories

2018-10-03
Abstract Fuel economy is a crucial parameter in long-haulage heavy-duty vehicles. Researchers tended to focus initially on engine combustion efficiency, while modern researchers turn their attention to the energy consumption of engine accessories in an attempt to enhance fuel economy. The accessories investigated in this study include the cooling fan, water pump, air compressor, power steering pump, air-conditioning (AC) compressor, and generator. Normally, accessory energy consumption analysis is based on rig data and simulation results. Here, we focus on the disparate test environments between the rig and vehicle to establish a novel steady power test method; the proposed method provides accurate accessory power data under different working conditions. A typical highway driving cycle is selected to collect accessory duty-cycle. The heavy-duty vehicle accessories’ energy consumption distribution under highway road conditions is obtained through the repeated road tests.
Journal Article

A Contribution to Improving the Thermal Management of Powertrain Systems

2019-10-08
Abstract This work presents a generalized methodology for the optimal thermal management of different powertrain devices. The methodology is based on the adoption of an electrically driven pump and on the development of a specifically designed controller algorithm. This is achieved following a Model Predictive Control approach and requires a generalized lumped-parameters model of the thermal exchange between the device walls and the coolant. The methodology is validated at a test rig, with reference to a four-cylinder spark-ignition engine. Results show that the proposed approach allows a reduction in fuel consumption of about 2-3% during the engine warm-up, a decrease in fuel consumption of about 1-2% during fully warmed operation, and an estimated fuel consumption reduction of about 2.5-3% in an NEDC. Finally, the investigation highlights that the proposed approach reduces the risk of after-boiling when the engine is rapidly switched off after a prolonged high-load operation.
Journal Article

Experimental Study on Elastomer Compatibility with Ethanol-Gasoline Blends

2021-09-17
Abstract Ethanol has shown tremendous potential in the journey of substitution of fossil fuels in the recent past. Primarily, the ethanol blends up to 10% in gasoline used in many countries as the existing vehicles are compatible with lower ethanol content. However, it is essential to address the compatibility of the vehicle’s fuel system when using higher ethanol-containing blends. The current study focused on the compatibility of different ethanol-gasoline blends with two widely used elastomer materials in the vehicle’s fuel system, namely, nitrile butadiene rubber/polyvinyl chloride blend (NBR/PVC) and epichlorohydrin (ECO). These materials are used for manufacturing parts like seals, gaskets, hoses/tubes, and cover of the fuel systems. The test fuels used in this study include commercial gasoline (E0), gasoline containing 10% ethanol (E10), 12% ethanol (E12), 15% ethanol (E15), and 20% ethanol (E20).
Journal Article

Design and Experiment on Aircraft Electromechanical Actuator Fan at Different Altitudes and Rotational Speeds

2019-06-07
Abstract For electromechanical actuators (EMAs) and electronic devices cooling on aircraft, there is a need to study cooling fan performance at various altitudes from sea level to 12,000 m where the ambient pressure varies from 1 to 0.2 atm. As fan static pressure head is proportional to air density, the fan’s rotational speed has to be increased significantly to compensate for the low ambient pressure of 0.2 atm at the altitude of 12,000 m. To evaluate fan performance for EMA cooling, a high-rotational-speed, commercially available fan made by Ametek with a diameter of ~82 mm and ~3 m3/min zero-load open cooling flow rate when operating at 20,000 rpm was chosen as the baseline. According to fan scaling laws, this fan was expected to meet the cooling needs for an EMA when operating at 0.2 atm. Using a closed flow loop, the performance of the fan operating in the above ambient pressure range and at a rotational speed between 15,000 and 30,000 rpm was evaluated.
Journal Article

Holistic Analysis of a Mild Hybrid Waste Heat Recovery System for Commercial Vehicles

2021-11-09
Abstract To further reduce fuel consumption and CO2 emissions of heavy-duty vehicles, recovering waste heat from the engine’s exhaust gases is a promising method. By means of an Organic Rankine Cycle (ORC), the thermal energy of the exhaust gases is converted into useable energy to support the powertrain. The integration of such a waste heat recovery (WHR) system into the powertrain as well as the transient operation presents several challenges: The interactions between the WHR system and the powertrain have to be analyzed, and their effect on fuel consumption has to be quantified in order to provide reliable fuel-saving potentials. In this article, a co-simulation model that couples the cooling system, the combustion engine, the vehicle’s longitudinal dynamics including the control system, and the WHR system is presented.
Journal Article

Evaluating the Cooling Performance of a Compressed Natural Gas Medium Commercial Vehicle with Water-Cooled Engine Systems—An Approach beyond Regulatory Standards

2021-11-03
Abstract The purpose of the article is to evaluate the cooling performance efficiency of a Compressed Natural Gas (CNG) medium commercial vehicle with a viscous fan, fresh air cleaner, and choked air cleaner in comparison with limits prescribed in the Indian Standard (IS) 14557. Due to the increase in CNG availability, a shift is observed in the market demand for CNG vehicles. The earlier CNG vehicle duty cycle was limited to plain roads and some limited cities, but now vehicles are being used for a short trip to nearby hilly routes thereby shifting the application of the use of a CNG vehicle. CNG vehicles can now be operated in hilly areas where power and torque demand is maximum and operates at lower vehicle speeds and in lower gears. The subjected vehicles are designed for haulage applications to operate with conventional fixed fans, which are permanently engaged, and smaller radiators.
Journal Article

Modeling of Ducted-Fan and Motor in an Electric Aircraft and a Preliminary Integrated Design

2018-10-04
Abstract Electric ducted-fans with high power density are widely used in hybrid aircraft, electric aircraft, and VTOL vehicles. For the state-of-the-art electric ducted-fan, motor cooling restricts the power density increase. A motor design model based on the fan hub-to-tip ratio proposed in this article reveals that the thermal coupling effect between fan aerodynamic design and motor cooling design has great potential to increase the power density of the motor in an electric propulsion system. A smaller hub-to-tip ratio is preferred as long as the power balance and cooling balance are satisfied. Parametric study on a current 6 kW electric ducted-fan system shows that the highest motor power density could be increased by 246% based on the current technology. Finally, a preliminary design was obtained and experiments were conducted to prove the feasibility of the model.
Journal Article

Exergetic Investigation of a Turboshaft Helicopter Engine Related to Engine Power

2020-10-19
Abstract Turboshaft engines, one of the classifications of the helicopters, combine the core engine and fan and consume fossil fuels. Using of fossil fuel causes global warming and environmental pollution, such as ecological, human health. To improve helicopter capability, energy is the first point of improvement. High-energy efficient helicopter engines help decrease the environmental damage. Exergy should be applied to the system to determine the maximum available energy. In this study, energy analysis and exergy analysis have been applied to a turboshaft helicopter engine. According to the result of this study, the maximum energy and exergy efficiencies are found to be 21.99% and 15.87%, respectively, at 1500 Shaft Horsepower (SHP). It is seen that the efficiencies increase with the increase of the engine power. Besides, exergy destructions and exergy loss values are presented by calculating different powers.
Journal Article

Predictive Thermal-Management Methods and Use Cases in a Mild-Hybrid Electric Vehicle

2021-06-14
Abstract In recent years, the numbers of battery electric vehicles and hybrid electric vehicles are strongly increasing in the European Union. For these applications dedicated thermal-management solutions have been developed. Since thermal management has a high impact on these vehicles’ efficiencies and ranges, its improvement with new potentialities is of ongoing high importance to cope with the latest European carbon dioxide-reduction targets. For boosting the efficiency of a thermal network, two predictive control methods are presented in this work, which handle the upcoming route profile and heat release. Thermal and mechanical behavior for the projection duration of e.g., 5 minutes are prognosed, and optimized control parameters are applied. On this basis, innovative capabilities of predictive control use cases are shown that help to reduce carbon dioxide emissions.
Journal Article

Computational Modeling of Twin Screw Pumps for Thermal Management Applications

2022-03-04
Abstract Electrification has become less of a catchphrase and increasingly commonplace when discussing today’s locomotives. Engineers developing thermal management strategies (both component suppliers and system-level analysts) must be armed with effective tools to design and analyze essential components such as coolant pumps and study their behavior in an actual system. This study focuses on the analysis of twin screw pumps for cooling battery packs in hybrid and battery electric vehicles via three different approaches—experimental measurements, a one-dimensional (1D) thermodynamic chamber model, and a three-dimensional (3D) computational fluid dynamics (CFD) model. Experimental measurements are conducted to quantify the coolant’s volume flow rate and estimate hydraulic power consumption over a range of operating speeds and pump discharge pressures.
Journal Article

Temperature and Consumed Energy Predictions for Air-Cooled Interior Permanent Magnet Motors Driving Aviation Fans—Part 1: Mathematical Analytical Solutions for Incompressible Air Cases

2022-04-13
Abstract The increase in worldwide awareness of environmental issues has necessitated the air transport industry to drastically reduce carbon dioxide emissions. To meet this goal, one solution is the electrification of aircraft propulsion systems. In particular, single-aisle aircraft with partial turboelectric propulsion with approximately 150 passenger seats in the 2030s are the focus. To develop a single-aisle aircraft with partial turboelectric propulsion, an air-cooled interior permanent magnet (IPM) motor with an output of 2 MW is desired. In this article, mathematical system equations that describe heat transfer inside the target air-cooled IPM motor are formulated, and their mathematical analytical solutions are obtained.
Journal Article

A Reduced-Order Modeling Framework for Simulating Signatures of Faults in a Bladed Disk

2022-08-29
Abstract This article reports a reduced-order modeling framework of bladed disks on a rotating shaft to simulate the vibration signature of faults in different components, aiming toward simulated data-driven machine learning. We have employed lumped and one-dimensional analytical models of the subcomponents for better insight into the complex dynamic response. The framework addresses some of the challenges encountered in analyzing and optimizing fault detection and identification schemes for health monitoring of aeroengines and other rotating machinery. We model the bladed disks and shafts by combining lumped elements and one-dimensional finite elements, leading to a coupled system. The simulation results are in good agreement with previously published data. We model and analyze the cracks in a blade with their effective reduced stiffness approximation.
Journal Article

Experimentally Based Methodology to Evaluate Fuel Saving and CO2 Reduction of Electrical Engine Cooling Pump during Real Driving

2023-03-09
Abstract Engine thermal management (ETM) is a promising technology that allows the reduction of harmful emissions and fuel consumption when the internal combustion engine (ICE) is started from a cold state. The key technology for ETM is the decoupling of the cooling pump from the crankshaft and the actuation of the pump independently. In this article, an electric engine cooling pump has been designed through a novel experimentally based procedure and operated on a vehicle equipped with an advanced turbocharged gasoline engine, particularly interesting for its hybridization potential. In the first phase, a dedicated experimental campaign was conducted off board on an engine identical to the one equipped in the vehicle to assess the characteristics of the cooling circuit and the reference pump performances.
X